共查询到20条相似文献,搜索用时 0 毫秒
1.
This study used atomic force microscopy (AFM), metallic probes with a nanoscale tip, and high-voltage generators to investigate the feasibility of high-voltage nano-oxidation processing in deionized water (DI water) and atmospheric environments. Researchers used a combination of wire-cutting and electrochemical etching to transform a 20-μm-thick stainless steel sheet into a conductive metallic AFM probe with a tip radius of 60 nm, capable of withstanding high voltages. The combination of AFM, high-voltage generators, and nanoscale metallic probes enabled nano-oxidation processing at 200 V in DI water environments, producing oxides up to 66.6 nm in height and 467.03 nm in width. Oxides produced through high-voltage nano-oxidation in atmospheric environments were 117.29 nm in height and 551.28 nm in width, considerably exceeding the dimensions of those produced in DI water. An increase in the applied bias voltage led to an apparent logarithmic increase in the height of the oxide dots in the range of 200-400 V. The performance of the proposed high-voltage nano-oxidation technique was relatively high with seamless integration between the AFM machine and the metallic probe fabricated in this study. 相似文献
2.
The acquisition rate of all scanning probe imaging techniques with feedback control is limited by the dynamic response of the control loops. Performance criteria are the control loop bandwidth and the output signal noise power spectral density. Depending on the acceptable noise level, it may be necessary to reduce the sampling frequency below the bandwidth of the control loop. In this work, the frequency response of a vacuum Kelvin force microscope with amplitude detection (AM-KFM) using a digital signal processing (DSP) controller is characterized and optimized. Then, the main noise source and its impact on the output signal is identified. A discussion follows on how the system design can be optimized with respect to output noise. Furthermore, the interaction between Kelvin and distance control loop is studied, confirming the beneficial effect of KFM on topography artefact reduction in the frequency domain. The experimental procedure described here can be generalized to other systems and allows to locate the performance limitations. 相似文献
3.
4.
XIAO Peng HAORAN Fu Ruisi Liu Lin Zhao Yuangang Zu Fengjie Xu Zhiguo Liu 《Scanning》2015,37(2):158-164
5.
We calculate a universal shift in work function of 59.4 meV per decade of dopant concentration change that applies to all doped semiconductors and from this use Monte Carlo simulations to simulate the resulting change in secondary electron yield for doped GaAs. We then compare experimental images of doped GaAs layers from scanning electron microscopy and conductive atomic force microscopy. Kelvin probe force microscopy allows to directly measure and map local work function changes, but values measured are often smaller, typically only around half, of what theory predicts for perfectly clean surfaces. 相似文献
6.
The adsorption of his-tag green fluorescent protein (GFPH(6)) onto the mica surfaces has been studied by atomic force microscopy (AFM) and laser confocal fluorescence microscopy. By controlling the adsorption conditions, separated single GFPH(6) and GFPH(6) monolayer can be adsorbed and formed on mica surfaces. In present experiments, based on the AFM measurement, we found that the adsorbed GFPH(6) was bound on the mica surface with its beta-sheets. The formed GFPH(6) monolayer on mica surfaces was flat, uniform, and stable. Some applications of the formed monolayer have been demonstrated. The formed monolayer can be used as a substrate for DNA imaging and AFM mechanical lithography. 相似文献
7.
Huang JC 《Scanning》2012,34(4):264-270
This study investigates the surface conditions of silicon wafers with native oxide layers (NOL) or hydrogen passivated layers (HPL) and how they influence the processes of nano-oxidation and wet etching. We also explore the combination of nano-oxidation and wet etching processes to produce nanostructures. Experimental results reveal that the surface conditions of silicon wafers have a considerable impact on the results of nano-oxidation when combined with wet etching. The height and width of oxides on NOL samples exceeded the dimensions of oxides on HPL samples, and this difference became increasingly evident with an increase in applied bias voltage. The height of oxidized nanolines on the HPL sample increased after wet etching; however, the width of the lines increased only marginally. After wet etching, the height and width of oxides on the NOL were more than two times greater than those on the HPL. Increasing the applied bias voltage during nano-oxidation on NOL samples increased both the height and width of the oxides. After wet etching however, the increase in bias voltage appeared to have little effect on the height of oxidized nanolines, but the width of oxidized lines increased. This study also discovered that the use of higher applied bias voltages on NOL samples followed by wet etching results in nanostructures with a section profile closely resembling a curved surface. The use of this technique enabled researchers to create molds in the shape of a silicon nanolens array and an elegantly shaped nanoscale complex structures mold. 相似文献
8.
具有三维力反馈的原子力显微镜纳米操作系统 总被引:5,自引:1,他引:5
在基于原子力显微镜的纳米操作过程中,由于缺乏实时反馈信息,造成纳米操作效率低下且灵活性差,同时探针因受力过大而损坏。为此,本文通过对探针受力-悬臂变形进行建模,并根据实时检测到的悬臂变形信号、新的参数获取与校准方法,从而获取探针所受的实时三维纳米力。将此三力经比例放大后送人力/触觉设备进行感知,操作者就可以实时调节施加在探针上力的大小及探针的运动轨迹,使得操作的效率及灵活性明显提高,且可以避免探针因受力过大而造成损坏。纳米刻画和多壁碳纳米管的操作实验验证了系统的有效性。 相似文献
9.
10.
Systematic nanotribological studies of Cr thin films using nanoscratch and AFM techniques are presented. Constant and ramped loading scratches were made using a Nano Indenter II system at various loads (1mN, 2.5mN and 5mN). Extensive AFM studies of the scratch wear tracks have been performed after scratching. The dependence of the displacement, residual wear depth, percent elastic recovery, and friction coefficient on load in constant load and ramped load tests is compared. Under the same (maximum) load, constant load tests exhibit higher displacements, residual depths and friction coefficients but lower percent elastic recoveries. Detailed AFM observations of the wear tracks indicate that significant differences in lateral deformation accompany the observed displacement differences. 相似文献
11.
In this study, the topography of human topoisomerase I (TOPO I) on mica surfaces in air and in liquid has been studied by atomic force microscopy (AFM). The average height of TOPO I on mica surface in air measured by AFM was 2.59±0.32 nm. After adsorption of the 0.3 U/µl TOPO I on mica surfaces for 2 h, and then imaged in liquid by AFM, well‐separated single TOPO I was observed. The average height of TOPO I on mica surfaces in liquid measured by AFM was 2.93±0.42 nm. After adsorption of the 4 U/µl TOPO I on mica surfaces for 1.5 h, TOPO I monolayer can be formed. The produced TOPO I monolayer on mica was flat and exhibited good stability. SCANNING 31: 160–166, 2009. © 2009 Wiley Periodicals, Inc. 相似文献
12.
This study constructs a contact-mode atomic force microscopy (AFM) simulation measurement model with constant force mode to simulate and analyze the outline scanning measurement by AFM. The simulation method is that when the probe passes the surface of sample, the action force of the atom of sample received by the atom of the probe can be calculated by using Morse potential. Through calculation, the equivalent force on the cantilever of probe can be acquired. By using the deflection angle equation for the cantilever of probe developed and inferred by this study, the deflection angle of receiving action force can be calculated. On the measurement point, as the deflection angle reaches a fixed deflection angle, the scan height of this simulation model can be acquired. By scanning in the right order, the scan curve of the simulation model can be obtained. By using this simulation measurement model, this study simulates and analyzes the scanning of atomic-scale surface outline. Meanwhile, focusing on the tip radii of different probes, the concept of sensitivity analysis is employed to investigate the effects of the tip radius of probe on the atomic-scale surface outline. As a result, it is found from the simulation on the atomic-scale surface that within the simulation scope of this study, when the tip radius of probe is greater than 12 nm, the effects of single atom on the scan curve of AFM can be better decreased or eliminated. 相似文献
13.
Indium tin oxide was deposited on a glass (soda lime glass) by radiofrequency sputtering system at different sputtering gas (argon/oxygen 90/10%) pressures (20-34 mTorr) at room temperature. The sputtering rate was affected by the sputtering gas pressure. The optimum sputtering gas pressure was found to be 27 mTorr. The samples at different thicknesses (168, 300, 400, 425, 475, 500 and 630 nm) were deposited on the substrate. Transparency, electrical conductivity and surface roughness of the films were characterized. The samples were annealed at 350, 400 and 450 degrees C to evaluate annealing process effects on the concerned parameters and, therefore, the above-mentioned measurements were repeated again. The films exhibited reasonable optical transmittance and electrical conductivity and greatly improved after annealing. The characterization was focused on the scanning of the film surfaces before and after annealing, which has a prominent effect on the optical properties of the films. Film surfaces were scanned by scanning probe microscopy in contact atomic force mode. The most consideration was devoted to image analysis. 相似文献
14.
This paper describes the use of a standard stereo-pair image display method for presenting the three-dimensional relief information found in atomic force microscope (AFM) images. The method makes use of commercially available image processing software packages. The techniques are illustrated on AFM images of the cuticle structure of a human hair fibre. 相似文献
15.
The tip is one of the critical factors to improve the efficiency in picking up individual DNA molecules from solid substrates based on atomic force microscope (AFM) nanomanipulation. We found that wearing AFM tips on certain solid substrates in advance to nanomanipulation operation would largely improve the pickup efficiency, which was ascribed to the increasing affinity of the tip to the DNA molecules along with the increase of the tip radius after wearing. It was demonstrated that bare mica was superior to APTES-modified mica to keep the tip clean while wearing, which was crucial for DNA pickup during AFM nanomanipulation. 相似文献
16.
Electrical Discharge Grinding (EDG) is an advanced machining process that becomes popular in manufacturing of Polycrystalline Diamond (PCD) tools. This research investigated the effects of wheel rotation as well as debris flow direction on the quality of PCD tools based on a series of EDG experiments. Experimental results showed the debris that flowed toward the cutting edge could significantly affect the edge sharpness and symmetry of the tool, which were critical for the smaller edge apex angle. Evidence of spark concentration caused by the debris accumulation phenomenon were found through microscopic analysis on the eroded surfaces. This research also revealed the unexplained phenomenon associated with the undercut that normally formed beneath the PCD cutting edge after erosion. By examining PCD samples using scanning electron microscopy (SEM) and Raman spectroscopy, the formation of the heat-affected layer caused by the high-temperature erosion process in the EDG was analyzed. Results also proved that the surface finish of tungsten carbide (WC) and notch width of the PCD tools, particularly on the tungsten carbide WC/PCD interface, should not be taken as the index to measure PCD tool quality. 相似文献
17.
DNA molecules immobilized on mica surface by various methods have been observed by atomic force microscopy both in air and in liquid. Divalent cations and 3-aminopropyltriethoxysilane (APTES) modified mica surface have been used to immobilize the DNA molecules. Optimal DNA and divalent cations concentration for AFM imaging are presented. Among the different methods of modifying mica surface with APTES, the water solution modifying method appears to get the best results. When using high DNA concentration for AFM imaging, DNA networks can be formed. A simple method to extend long DNA molecules is demonstrated. The optimal imaging conditions and AFM operating techniques are discussed. Different DNA immobilizing methods have been compared and evaluated. 相似文献
18.
19.
Hsinn-Jyh Tzeng Biing-Hwa Yan Rong-Tzong Hsu Han-Ming Chow 《The International Journal of Advanced Manufacturing Technology》2007,34(7-8):649-656
This experimental research use the method of abrasive flow machining (AFM) to evaluate the characteristics of various levels
of roughness and finishing of the complex shaped micro slits fabricated by wire electrical discharge machining (Wire-EDM).
An investigative methodology based on the Taguchi experimental method for the micro slits of biomedicine was developed to
determine the parameters of AFM, including abrasive particle size, concentration, extrusion pressure and machining time. The
parameters that influenced the machining quality of the micro slits were also analyzed. Furthermore, in the shape precision
of the micro slit fabricated by wire-EDM and subsequently fine-finished by AFM was also elucidated using a scanning electron
microscope (SEM). The significant machining parameters and the optimal combinations of the machining parameters were identified
by ANOVA (analysis of variation) and the S/N (-to-noise) ratio response graph. ANOVA was proposed to obtain the surface finishing
and the shape precision in this study. 相似文献
20.
Tribological Properties of Self-Assembled Monolayers and Their Substrates Under Various Humid Environments 总被引:4,自引:0,他引:4
Using friction force microscopy (FFM) under controlled environments, we have systematically investigated the humidity effect on the frictional properties of two important classes of self-assembled monolayers (SAMs), i.e., N-octadecyltrimethoxysilane (OTE, CH3(CH2)17Si(OCH3)3) on SiO2(OTE/SiO2), and N-alkanethiols on Au(111), together with their respective substrates. Experimental results show that both OTE and alkylthiol SAMs can decrease the friction force between a Si3N4 atomic force microscope (AFM) tip and substrates. The nearly humidity-independent friction of the two kinds of SAMs indicates that these SAMs are ideal lubricants in applications of micro-electro-mechanical systems (MEMS) under different environments. The humidity dependence—as the humidity increases, the friction first increases and then decreases—of the two substrates, SiO2 and Au(111), can be explained by the adsorption of water. The decrease in the friction at high humidity is attributed to the low viscosity in the multilayers of water, while the increase in the friction at low humidity can be explained by the high viscosity between the water monolayer and the surfaces (AFM tip and sample), possibly due to the confinement effects. The effect of modification of the AFM tip with alkanethiol molecules on the humidity dependence of Au(111) friction has also been investigated. 相似文献