首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
《传感器与微系统》2019,(12):116-119
数字闭环石英挠性加速度计系统主要由石英挠性加速度计表头和数字检测电路组成,其极限精度取决于差动电容检测电路的灵敏度。针对数字闭环石英挠性加速度计前端差动电容检测的需求,给出了一种基于电容桥的差动电容检测方法。利用数字电路产生高频方波进行单载波调制,同时利用交流电容桥结构对载波信号进行处理,并设计后续的差分放大电路对载波信号进一步处理最终实现对微弱差动电容变化的检测。经过实验验证,检测电路对电容的检测最终实现最小分辨率约为1. 8 f F(对应加速度变化1μgn)。  相似文献   

2.
电容式微加速度计的噪声分析   总被引:1,自引:1,他引:0  
噪声是以微弱信号处理为特征的电容式微加速度计性能提高的主要制约因素。针对电容式微加速度计的噪声,详细分析和研究了其特性。首先分析了电容式微加速度计的系统噪声由机械热噪声和电路噪声两部分组成;采用热力学均分理论和集成电路噪声特性分别对机械热噪声和电路噪声进行建模、分析和计算,得到了机械热噪声等效噪声加速度和各级电路的噪声值。然后用自行设计的微加速度计表头和接口电路进行试验,实验结果验证了噪声模型的正确性,确认了电容式微加速度计电容检测电路—电荷放大器是最主要的噪声源。  相似文献   

3.
阐述了三明治式电容微加速度计的工作原理,并在此基础上介绍了一种具体的三明治式微加速度计的设计:采用一种通用的电容读取电路MXT9030实现对电容式微加速度传感器的信号检测,通过微控制器的控制,调节MXT9030电路的内部参数,使加速度计系统具有良好的线性度及灵敏度。实验结果表明,该设计可满足较大范围内的电容差分信号输入,并具有良好的检测灵敏度和线性度。  相似文献   

4.
针对硅微加速度计中微小差分电容检测,提出了一种基于调制解调方法的闭环检测电路,介绍了该闭环检测系统的原理框图和实现途径。分析了基于单路载波的前置电容-电压( C-V)转换电路,证明了基于相关芯片的解调方法的有效性,其解调效率仅对开环输出有影响;基于双路反馈电路的静电力平衡回路有效提高该检测系统的线性度。结合硅微加速度计参数和电路设计参数,对加速度计系统进行了仿真,仿真结果显示系统稳定,刻度系数为0.9 V/gn 左右,带宽700 Hz左右。结合表头进行的精密转台实验结果表明该加速度计系统刻度系数0.88 V/gn,量程可达±13 gn。  相似文献   

5.
本文对电容检测式加速度计系统中广泛采用的差分电容电压转换电路建立了电容电压转换电路的等效噪声模型,并对双运放集成电路芯片所构成的差分电容电压转换电路的本底噪声以及仪表放大器输出端的噪声进行了测试,将电容电压转换电路本底噪声中的差模噪声分量和共模噪声分量进行了分离.测试结果表明影响加速度计系统噪声性能的差模噪声分量占电容...  相似文献   

6.
电容式力平衡加速度计的设计   总被引:1,自引:4,他引:1  
电容式微机械加速度计是一种将加速度转换成差分电容、通过检测差分电容的变化来检测加速度大小的一类高精度的惯性传感器.利用开关电容电路实现C-V变换,利用反馈静电力实现力平衡闭环控制,设计了一种电容式微机械加速度计.通过构建电容式加速度传感器及外围电路的数学模型,推导了闭环工作的系统函数.并对实际系统进行研制,最后给出了整个系统的测试结果.  相似文献   

7.
为了提高MEMS微加速度计的量程和抗过载能力,设计了基于UV-LIGA技术的非硅MEMS电容式微加速度计。针对该加速度计,设计了基于相敏解调的差分电容测控电路。检测通道主要由前置级电荷积分放大电路、带通滤波电路、相敏解调器、低通滤波以及电平转换电路组成,反馈通道由低通滤波和加法电路组成。完成了微加速度计测控电路的调试和检测通道的标定实验,实验表明:检测通道的量程约为±6 pF,灵敏度为89.3 mV/pF,线性度为2.59%,满足加速度计检测通道的要求。  相似文献   

8.
通过对MEMS电容式加速度计的差分电容检测电路优缺点的比较,结合直流充放电检测方法和交流测量方法的优点,设计了微分检测电路,用方波作为载波。该电路由方波信号发生器、微分电路、全波整流电路和滤波电路组成。经试验验证:可检测到10-16F的差分电容,且其非线性度小于±1%FS,可作为MEMS电容式加速度计的后续处理电路。  相似文献   

9.
基于FPGA的数字式电容检测系统   总被引:1,自引:0,他引:1  
基于微机械工艺制作的加速度计,广泛采用差动结构电容变化来反映被测量的方向和大小。近年来针对该需求研制了检测微小电容变化的电路。采用基于FPGA实现的数字式电容检测系统,具有高精度和稳定度,对寄生电阻、电容不敏感,并直接采用数字接口输出。它检测电容变化范围为±2pF,电容检测分辨率可达到0.115fF。将系统连接到灵敏度为1.056pF/g的加速度计后,可以测量的加速度分辨率为0.107mg,对应的动态范围为4.0×104。  相似文献   

10.
为了在总体上把握硅微加速度计的设计,建立了叉指式硅微加速度计的机械模型,研究了全差分二阶∑-ΔADC接口检测电路提取加速度信号,优化了开关电容电路来检测微小电容变化量,运用微机电专用设计软件CoventorWare对系统的机电混合模型进行仿真,并给出数字和模拟的分析结果,为加速度计系统的机械部分和电路部分的设计提供整体的更接近实际的设计参考。  相似文献   

11.
设计了电容式加速度计的信号检测电路,与电容式加速度计敏感单元进行联调和测试,并进行了标定。为减小体积,提高电容式加速度计的检测精度,采用厚膜混合集成工艺,将检测电路和电容式加速度计敏感单元集成于一体,并进行了电路测试和性能测试。测试数据表明,其测试精度提高了一个数量级,线性度和温度特性均有很大的改善。  相似文献   

12.
针对风洞试验中的振动,设计了变面积式电容式加速度传感器,阐述了弱信号检测系统并着重介绍了几个重要的模块电路即交流激励信号源电路、电容电压电路、滤波电路、并利用电子自动化检测仿真软件multisim对设计的主要模块电路分别进行了仿真分析。仿真结果表明设计的电路能完成微弱电容信号的检测。同时,为了提高电路性能,对弱信号检测电路中的杂散电容干扰进行了分析研究,并设计了电路对噪声进行了抑制。  相似文献   

13.
为了减小电容式加速度计的体积,提高检测精度、扩展应用范围,采用厚膜混合集成工艺,将检测电路和电容式加速度计敏感单元集成于一体。详细介绍了厚膜混合集成工艺的版图设计和制作过程,并介绍了制作工艺中的各道工序。用UP-16封装形式,对厚膜混合集成电容式加速度计进行了封装。经过与原电路比较后可知经厚膜混合集成后,体积大大减小,经封装后通过金属外壳接地,提高抗干扰能力,经测试,其测试精度能提高1—2个数量级。  相似文献   

14.
目前研制的基于体硅工艺的微加速度计存在着启动时间较长,启动漂移量较大的问题,难以满足某些需要快速启动的应用.为了减少微加速度计的启动时间,对微加速度计的启动漂移特性进行了研究.分析了启动过程中微加速度计表芯自身发热,驱动和检测电路的发热的热传导和电路参数漂移的影响,并建立了包括电路的微加速度计有限元模型进行热仿真分析,...  相似文献   

15.
单载波调制型加速度计差分电容检测电路   总被引:1,自引:0,他引:1  
单载波调制型差分电容检测电路是为满足微机械加速度计高线性度、高分辨率的需要而设计的,本文给出了检测电路的原理图,分析了寄生电阻、电容模型,从理论上证明该电路可有效消除寄生电阻和电容的影响,并推导了各关键功能模块的传递函数;此外,从电路的各个局部环节研究了会对电路性能造成影响的因素,包括放大电路的噪声源、载波信号稳定性、两路电荷放大器一致性、调制信号与参考信号相位同步等.经理论推导,通过改进和避免不利因素的影响即可保证电路的稳定性,适用于微机械加速度计检测领域.  相似文献   

16.
高Q值加速度计由于能够很好地降低热机械布朗噪声,被广泛应用于高精度低噪声检测领域,相应的闭环接口电路却成为其应用的困难之一.通过分析传感器的器件结构和动态响应,提出了一种基于PID反馈的闭环检测电路来克服传感器因高Q值造成的不利影响,改善系统的频率特性和动态响应.根据设计原理设计和测试了基于PCB板级的闭环检测电路.电...  相似文献   

17.
石英挠性加速度计的内部力矩器噪声对于高精度的加速度计应用系统的影响是不可忽视的,但很少引起高度重视.针对高精度加速度计电路应用需要,研究了力矩器机械热噪声和力矩器线圈谐振的影响,建立了表头内部力矩器噪声电路模型,设计了测试电路,并对噪声电路模型进行了测试与验证.理论和实验结果均表明:机械热噪声产生的等效加速度对系统影响较小,力矩器线圈影响的谐振与驱动方式及驱动频率有关,脉宽调制(PWM)波驱动方式较正弦波驱动方式产生的谐振影响更大,当驱动频率靠近谐振点时,产生毫安(mA)级的谐振电流.模型的建立对石英挠性加速度计应用具有较好的参考价值.  相似文献   

18.
高品质因数(Q)的加速度计因其具有较低的机械热噪声而适合高性能的振动检测,但Q值过高会带来接口电路的不稳定。为了充分利用传感器的特性优化Sigma.Delta(∑△)数字接口电路设计,通过分析加速度计的数字接口电路模型,验证了Q值的变化对数字量化噪声的影响,并且适当的Q值能降低数字接口电路基带内的量化噪声。设计和测试了基于三明治加速度计的PCB板级电路,测试结果表明:传感器的高Q特性会在基带引入一对共轭零点,抑制了基带内的量化噪声。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号