首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lead-free (K0.44Na0.52Li0.04)(Nb0.80− x Ta0.20Sb x )O3 piezoelectric ceramics were prepared by the ordinary sintering method. The much higher Pauling electronegativity of Sb compared with Nb makes the ceramics more covalent. By increasing x from 0.00 to 0.06, the phase structure of the ceramics changed from the tetragonal to the pseudocubic phase, and both the bands in the Raman scattering spectra shifted to lower frequency numbers. The grain growth of the ceramics was improved by substituting Sb5+ for Nb5+. By increasing x , the dielectric properties were optimized and the variation of dielectric constants before and after poling became smaller. Only the tetragonal–cubic phase transition was observed above room temperature in all the ɛr– T curves. The degree of diffuseness increased from 1.29 at x =0.00 to 1.96 at x =0.06, indicating that the ceramics at x =0.06 changed to an approximate ideal relaxor ferroelectric. The temperature dependences of f r and k p became better by increasing x properly. Significantly, the ceramics with x between 0.00 and 0.04 had high density and outstanding electrical properties ( d 33=241–272pC/N, k p=0.42–0.52, ɛr=1258–1591, tan δ=0.015–0.025, T c=280°–355°C, E c=10.62–12.60 kV/cm, and P r=16.19–20.13 μC/cm2). Besides, the underlying mechanism for variations of the electrical properties due to Sb5+ substitution was explained in this work.  相似文献   

2.
The sintering behavior and dielectric properties of perovskite Ag(Nb1− x Ta x )O3 (0 < x < 1) solid solutions and two-phase composite assemblages were explored. A small amount of CuO (1 wt%) was used for liquid-phase sintering and led to high densification at temperatures <950°C. The temperature coefficient of capacitance, TCC, was adjusted by varying the Nb:Ta ratio within the solid-solution series and by creating composite microstructures. Two-phase assemblages consisting of Ag(Nb3/4Ta1/4)O3 and Ag(Nb1/4Ta3/4)O3 were synthesized to achieve a temperature-stable dielectric material for high-frequency applications. The composite dielectric with CuO addition had an average dielectric constant of 390 and a Q × f factor of 410 GHz at 2 GHz, with a stable TCC (0 to −180 ppm/°C) in the temperature range from −20° to +60°C. In addition, process compatibility with a silver conductor was confirmed by high-frequency ring-resonator measurements and microstructural characterization. The Ag(Nb1− x Ta x )O3 solid solutions and composites are promising candidates as embedded capacitors for radio-frequency/microwave applications.  相似文献   

3.
K(Ta,Nb)O3 (KTN) thin films have been prepared by the chemical solution deposition method. KTN precursors consisted of a uniform mixture of K[Ta(OC2H5)6] and K[Nb(OC2H5)6] with interaction at the molecular level. Perovskite KTN thin films with the desired composition (Ta/Nb = 65/35, 50/50, and 35/65) were synthesized from the precursor solutions by the dip coating method. KTN thin films with (100) preferred orientation were successfully synthesized on MgO(100) and Pt(100)/MgO(100) substrates. X-ray pole figure measurements showed that grains of KTN films had a prominent three-dimensional regularity on MgO(100) and Pt(100)/MgO(100) surfaces. The Curie temperatures of KTN films decreased with increasing Ta/Nb ratio. Typical P-E hysteresis loops were observed for KTN thin films of three compositions on Pt(100)/MgO(100) substrates. The values of remanent polarization ( P r) of KTN films increased as the Ta/Nb ratio changed from 65/35 to 35/65.  相似文献   

4.
A new type (1− x )(K0.485Na0.485Li0.03)NbO3– x Pb(Zr0.53Ti0.47)O3 piezoelectric ceramics was fabricated by conventional ceramics sintering technique. Their microstructure and electrical properties of the ceramics were also studied. X-ray diffraction and scanning electron microscopy patterns indicate that all ceramics samples exhibit a pure perovskite and highly dense structure, and the coexistence of the tetragonal and orthorhombic phases is formed; The ceramic with x =0.75 exhibits the following excellent properties: d 33=363 pC/N, k p=63%, Q m=142, ɛr=1590, tan δ=1.70%, P r=28.6 μC/cm2, E c=0.89 kV/mm, T c=295°C. These results indicate that the ceramic is a promising candidate for piezoelectric ceramics in practical applications.  相似文献   

5.
(Na0.5K0.5)NbO3 (NKN) ceramic with 1.5 mol% CuO added (NKNC) was well sintered even at a low temperature of 900°C with the addition of ZnO. Most of the ZnO reacted with the CuO and formed the liquid phase that assisted the densification of the specimens at 900°C. A few Zn2+ ions entered the matrix of the specimens and increased the coercive field ( E c) and Q m values of the specimens. High-piezoelectric properties of k p=0.37, Q m=755, and ɛ3 T0=327 were obtained from the NKNC ceramics containing 1.0 mol% ZnO sintered at 900°C for 2 h.  相似文献   

6.
Li/Ta-codoped lead-free (Na,K)NbO3 ceramics with a nominal composition of [(Na0.535K0.480)0.942Li0.058](Nb0.90Ta0.10)O3 were synthesized normally at 1070°–1100°C. The XRD patterns of all samples show a single pervoskite structure with tetragonal symmetry. Although MPB separating the orthorhombic and tetragonal symmetries was absent, the maximum piezoelectric coefficient ( d 33), electromechanical coupling coefficient ( k p), Curie temperature ( T c), and remanent polarization ( P r) were optimized as 216 pC/N, 38.1%, 445°C, and 8.73 μC/cm2, respectively.  相似文献   

7.
8.
The dielectric properties, lattice parameters, and X-ray and neutron diffraction intensities of solid solutions of BaTiO3 containing Nb or Ta were studied. These solid solutions have a perovskite-type structure with part of the Ti4+ ions replaced by Nb5+ or Ta6+ ions and with some cation vacancies. These solid solutions exhibit a remarkable lowering of the Curie point, but the tetragonal-orthorhombic and the orthorhombic-rhombohedral transition points are raised.  相似文献   

9.
(1− x )(K0.48Na0.52)(Nb0.95Ta0.05)O3– x LiSbO3 [(1− x )KNNT− x LS] lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method. A morphotropic phase boundary (MPB) between orthorhombic and tetragonal phases was identified in the composition range of 0.03< x <0.05. The ceramics near the MPB exhibit a strong compositional dependence and enhanced electrical properties. The (1− x )KNNT– x LS ( x =0.04) ceramics exhibit good electrical properties ( d 33=250 pC/N, k p=45.1%, k t =46.3%, T c=348°C, T o − t =74°C, P r=25.9 μC/cm2, E c=10.7 kV/cm, ɛr∼1352, tan δ∼3%). These results show that (1− x )KNNT– x LS ceramic is a promising lead-free piezoelectric material.  相似文献   

10.
Highly oriented K(Ta,Nb)O3 (Ta:Nb = 65:35) (KTN) thin films of perovskite structure were synthesized successfully on Pt(100)/MgO(100) substrates from a metal alkoxide solution through reaction control. Homogeneous KTN coating solutions prepared from KOC2H5, Ta(OC2H5)5, and Nb(OC2H5)5 in ethanol were analyzed by 1H, 13C, and 93Nb NMR spectroscopy. The KTN precursor included a molecular-level mixture of K[M(OC2H5)6] (M = Ta, Nb) units interacting in ethanol solution. X-ray pole figure measurement showed that perovskite KTN films crystallized on Pt(100)/MgO(100) substrates had not only a (100) orientation but also a three-dimensional regularity of grains. The remanent polarization and coercive field of the KTN film (thickness, 1.0 μm) crystallized at 700°C were 1.5 μC/cm2 and 8.7 kV/cm, respectively, at 225 K.  相似文献   

11.
采用固相法制备(1-x)(K0.52Na0.44Li0.04)(Nb0.86Ta0.10Sb0.04)O3-xBiFeO3[(1-x)LF4-xBF]无铅压电陶瓷,研究BF含量(0≤x≤0.010 00)对LF4陶瓷微观结构和电性能的影响.结果表明:所有样品均具有纯的四方钙钛矿结构,引入BF能明显改善LF4陶瓷的致密性...  相似文献   

12.
An X-ray diffraction study of a high-purity NaNbO3 specimen in the range 25α to 705α C is reported. The symmetry of the perovskite sub-cell of NaNbO3 was determined unambiguously by observing the splitting of the line groups N = 12 and N = 16 when the diffraction pattern was indexed on the basis of the perovskite cell as a unit cell for the structure. Diffraetometter studies were conducted using Fe K α radiation for the N = 12 line group and Cu K α radiation for the N = 16 line group. Phase transitions occurred at 372°, 420°, 478°, 527°, 576°, and 640°± 5°C. The symmetry of the perovskite sub-cell changed from monoclinic to tetragonal at 372°C when heated and remained tetragonal up to 640°C when it became cubic. Two-phase mixtures were observed at 372°, 576°, and 640°C and it was concluded that these transitions are probably of first order.  相似文献   

13.
Lead-free potassium sodium niobate-based piezoelectric ceramics (1− x )(Na0.5K0.5)NbO3– x BiScO3 (KNN–BS) ( x =0∼0.05) have been prepared by an ordinary sintering process. Single perovskite phase of KNN–BS exhibits an orthorhombic symmetry at x <0.015 and pseudocubic symmetry at x >0.02, separating by a MPB at 0.015≤ x ≤0.02. Piezoelectric and ferroelectric properties are significantly enhanced in the MPB, which are as follows: piezoelectric constant d 33=203 pC/N, planar coupling coefficient k p=0.36, remnant polarization P r=24.4 μC/cm2. These solid solution ceramics look promising as a potential lead-free candidate materials.  相似文献   

14.
When a small amount of CuO was added to (Na0.5K0.5)NbO3 (NKN) ceramics sintered at 960°C for 2 h, a dense microstructure with increased grains was developed, probably due to liquid-phase sintering. The Curie temperature slightly increased when CuO exceeded 1.5 mol%. The Cu2+ ion was considered to have replaced the Nb5+ ion and acted as a hardener, which increased the E c and Q m values of the NKN ceramics. High piezoelectric properties of k p=0.37, Q m=844, and ɛ3 T 0=229 were obtained from the specimen containing 1.5 mol% of CuO sintered at 960°C for 2 h.  相似文献   

15.
Lead-free piezoelectric (K0.5Na0.5)NbO3– x wt% Bi2O3 ceramics have been synthesized by an ordinary sintering technique. The addition of Bi2O3 increases the melting point of the system and improves the sintering temperature of (K0.5Na0.5)NbO3 ceramics. All samples show a pure perovskite phase with a typical orthorhombic symmetry when the Bi2O3 content <0.7 wt%. The phase transition temperature of orthorhombic–tetragonal ( T O − T ) and tetragonal–cubic ( T C) slightly decreased when a small amount of Bi2O3 was added. The remnant polarization P r increased and the coercive field E c decreased with increasing addition of Bi2O3. The piezoelectric properties of (K0.5Na0.5)NbO3 ceramics increased when a small amount of Bi2O3 was added. The optimum piezoelectric properties are d 33=140 pC/N, k p=0.46, Q m=167, and T C=410°C for (K0.5Na0.5)NbO3–0.5 wt% Bi2O3 ceramics.  相似文献   

16.
Lead-free (K0.44Na0.52Li0.04) (Nb0.96−xTaxSb0.04)O3 piezoelectric ceramics were prepared by the conventional solid-state sintering method. The grain growth of the ceramics was inhibited and the relative density was improved with Ta substituting for Nb. Increasing x led to different variations of dielectric properties before and after poling, and prevented the occurrence of orthorhombic–tetragonal phase transition (at T o − t ). All the ceramics show an intermediate relaxor-like behavior between normal and ideal relaxor ferroelectrics. Significantly enhanced dielectric and piezoelectric properties were obtained in the ceramics with x =0.20. The ceramics are very promising lead-free materials for electromechanical device applications.  相似文献   

17.
Effects of additives on the piezoelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3 ceramics in a perovskite-type structure are described. The tetragonality of Pb(Mg1/3Nb2/3)0.375-Ti0.375Zr0.25O3 ceramics increased with the addition of NiO, Cr2O3, or Fe2O3 but decreased with the addition of MnO2 or CoO. The dielectric and piezoelectric properties of the base composition were improved markedly through selection of additives in proper amounts. Addition of NiO yielded a high dielectric constant and planar coupling coefficient for compositions at the morphotropic transition boundary. High mechanical Q -factors and low electrical dissipation factors were obtained by addition of MnO2. Addition of both NiO and MnO2 produced a mechanical Q -factor of 2051 and a planar coupling coefficient of 0.553. The resonant frequency of Pb(Mg1/2Nb2/3)0.4375Ti0.4375 zr0.125O3 containing MnO2 had very low temperature and time dependence. The microstructure indicated that ceramics with a high mechanical Q -factor had a fine, uniform grain structure. Addition of Cr2O3 retarded grain growth and addition of MnO2, NiO, CoO, or Fe2O3 promoted grain growth in the ternary system.  相似文献   

18.
A unique core–shell structure was observed in coarse grains in (K,Na)NbO3 (KNN)-based lead-free piezoelectric ceramics. It is morphologically different from the chemical inhomogeneity-induced core–shell grain structure reported previously in BaTiO3-based ceramics. The core region is composed of highly parallel nanosized subgrains, whereas the shell region consists of larger-sized but similar self-assembled subgrains. The electron-backscattered diffraction analysis and selected area electron diffraction pattern confirmed that coarse grains with a core–shell structure were single-crystalline-like grains. The formation process of such coarse grains was then discussed based on mesocrystal growth along with the classical theory of grain growth. The two studied KNN-based systems showed a similar grain growth transformation: from self-assembled aggregation clusters with nanosized subgrains to a typical core–shell grain structure when the sintering temperature was increased only by a range of 10°–20°C. The volatilized alkali metal oxides and liquid phase were supposed to accelerate such grain growth transformation. When abnormal grown grains with a core–shell structure occurred, both systems showed the highest densities and dielectric constants along with the lowest dielectric losses, while their piezoelectric properties tended to decline.  相似文献   

19.
We investigate the ferroelectric properties of Pb(Zn1/3Nb2/3)O3–PbTiO3(PZN–PT)-based ceramics, which are stabilized by adding a small amount of NaNbO3 (NN) and KNbO3 (KN). As the content of alkali niobate increased, the ferroelectric properties of Pb(Zn1/3Nb2/3)O3–PbTiO3–RNbO3 (PZN–PT–RN; R=Na, K) became softer, which was more pronounced in PZN–PT–KN. The difference in the piezoelectric properties between PZN–PT–KN and PZN–PT–NN was explained by the cation size effect. Because the ionic size of Na is smaller than that of K, the Na ion can retain the ferroelectricity of the solid solution more effectively. The field-induced strain of 85PZN–5PT–10NN under 10 kV/cm was as high as 0.1%. Also, the addition of NN increased the tunability of dielectric constant significantly. At a composition of 85PZN–5PT–20NN, the tunability was 90% and no hysteresis was observed. In contrast to RN, the increase in the content of PT caused the transition from relaxor to normal ferroelectrics, which were accompanied by the structural change from the rhombohedral to tetragonal phase.  相似文献   

20.
Lead-free Na0.5K0.5NbO3 (NKN) piezoelectric ceramics were fairly well densified at a relatively low temperature under atmospheric conditions. A relative density of 96%–99% can be achieved by either using high-energy attrition milling or adding 1 mol% oxide additives. It is suggested that ultra-fine starting powders by active milling or oxygen vacancies and even liquid phases from B-site oxide additives mainly lead to improved sintering. Not only were dielectric properties influenced by oxide additives, such as the Curie temperature ( T c) and dielectric loss ( D ), but also the ferroelectricity was modified. A relatively large remanent polarization was produced, ranging from 16 μC/cm2 for pure NKN to 23 μC/cm2 for ZnO-added NKN samples. The following dielectric and piezoelectric properties were obtained: relative permittivity ɛ T 33 0 =570–650, planar mode electromechanical coupling factor, k p=32%–44%, and piezoelectric strain constant, d 33=92–117 pC/N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号