共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic parameters for milk, fat, and protein yield and persistency in the first 3 lactations of Polish Black and White cattle were estimated. A multiple-lactation model was applied with random herd-test-day effect, fixed regressions for herd-year and age-season of calving, and random regressions for the additive genetic and permanent environmental effects. Three data sets with slightly different edits on minimal number of days in milk and the size of herd-year class were used. Each subset included more than 0.5 million test-day records and more than 58,000 cows. Estimates of covariance components and genetic parameters for each trait were obtained by Bayesian methods using the Gibbs sampler. Due to the large size and a good structure of the data, no differences in estimates were found when additional criteria for record selection were applied. More than 95% of the genetic variance for all traits and lactations was explained by the first 2 principal components, which were associated with the mean yield and lactation persistency. Heritabilities of 305-d milk yield in the first 3 lactations (0.18, 0.16, 0.17) were lower than those for fat (0.12, 0.11, 0.12) and protein (0.13, 0.14, 0.15). Estimates of daily heritabilities increased in general with days in milk for all traits and lactations, with no apparent abnormalities at the beginning or end of lactation. Genetic correlations between yields in different lactations ranged from 0.74 (fat yield in lactations 1 and 3) to 0.89 (milk yield in lactations 2 and 3). Persistency of lactation was defined as the linear regression coefficient of the lactation curve. Heritability of persistency increased with lactation number for all traits and genetic correlations between persistency in different lactations were smaller than those for 305d yield. Persistency was not genetically correlated with the total yield in lactation. 相似文献
2.
Test-day milk yields of first-lactation Black and White cows were used to select the model for routine genetic evaluation of dairy cattle in Poland. The population of Polish Black and White cows is characterized by small herd size, low level of production, and relatively early peak of lactation. Several random regression models for first-lactation milk yield were initially compared using the “percentage of squared bias” criterion and the correlations between true and predicted breeding values. Models with random herd-test-date effects, fixed age-season and herd-year curves, and random additive genetic and permanent environmental curves (Legendre polynomials of different orders were used for all regressions) were chosen for further studies. Additional comparisons included analyses of the residuals and shapes of variance curves in days in milk. The low production level and early peak of lactation of the breed required the use of Legendre polynomials of order 5 to describe age-season lactation curves. For the other curves, Legendre polynomials of order 3 satisfactorily described daily milk yield variation. Fitting third-order polynomials for the permanent environmental effect made it possible to adequately account for heterogeneous residual variance at different stages of lactation. 相似文献
3.
Santellano-Estrada E Becerril-Pérez CM de Alba J Chang YM Gianola D Torres-Hernández G Ramírez-Valverde R 《Journal of dairy science》2008,91(11):4393-4400
This study inferred genetic and permanent environmental variation of milk yield in Tropical Milking Criollo cattle and compared 5 random regression test-day models using Wilmink's function and Legendre polynomials. Data consisted of 15,377 test-day records from 467 Tropical Milking Criollo cows that calved between 1974 and 2006 in the tropical lowlands of the Gulf Coast of Mexico and in southern Nicaragua. Estimated heritabilities of test-day milk yields ranged from 0.18 to 0.45, and repeatabilities ranged from 0.35 to 0.68 for the period spanning from 6 to 400 d in milk. Genetic correlation between days in milk 10 and 400 was around 0.50 but greater than 0.90 for most pairs of test days. The model that used first-order Legendre polynomials for additive genetic effects and second-order Legendre polynomials for permanent environmental effects gave the smallest residual variance and was also favored by the Akaike information criterion and likelihood ratio tests. 相似文献
4.
Genetic parameters for test-day electrical conductivity of milk for first-lactation cows from random regression models 总被引:1,自引:0,他引:1
Electrical conductivity (EC) of milk has been introduced as an indicator trait for mastitis during the last few decades. The correlation of EC to mastitis, easy access to EC data, and the low cost of recording are properties that make EC a good indicator trait for mastitis. In this study, EC was measured daily during the lactation and available from 2101 first-lactation Holstein cows in 8 herds in the United States. Data were analyzed with an animal model that included herd-test-day, age at calving and days in milk (DIM) as fixed effects, and random additive genetic and permanent environmental effects. A repeatability model and 5 random regression (RR) models with increasing order of Legendre polynomials were used. The goodness of fit for the different models was evaluated based on several tests. Our results indicate that the best model was a RR model with a fourth-order Legendre polynomial for both additive genetic and permanent environmental effects. Heritability estimates obtained with this model were from 0.26 to 0.36. Due to the relatively high heritability obtained for EC of milk, EC might be a potential indicator trait to use in a breeding program designed to reduce the incidence of mastitis. 相似文献
5.
Aspilcueta-Borquis RR Araujo Neto FR Baldi F Santos DJ Albuquerque LG Tonhati H 《The Journal of dairy research》2012,79(3):272-279
The test-day yields of milk, fat and protein were analysed from 1433 first lactations of buffaloes of the Murrah breed, daughters of 113 sires from 12 herds in the state of S?o Paulo, Brazil, born between 1985 and 2007. For the test-day yields, 10 monthly classes of lactation days were considered. The contemporary groups were defined as the herd-year-month of the test day. Random additive genetic, permanent environmental and residual effects were included in the model. The fixed effects considered were the contemporary group, number of milkings (1 or 2 milkings), linear and quadratic effects of the covariable cow age at calving and the mean lactation curve of the population (modelled by third-order Legendre orthogonal polynomials). The random additive genetic and permanent environmental effects were estimated by means of regression on third- to sixth-order Legendre orthogonal polynomials. The residual variances were modelled with a homogenous structure and various heterogeneous classes. According to the likelihood-ratio test, the best model for milk and fat production was that with four residual variance classes, while a third-order Legendre polynomial was best for the additive genetic effect for milk and fat yield, a fourth-order polynomial was best for the permanent environmental effect for milk production and a fifth-order polynomial was best for fat production. For protein yield, the best model was that with three residual variance classes and third- and fourth-order Legendre polynomials were best for the additive genetic and permanent environmental effects, respectively. The heritability estimates for the characteristics analysed were moderate, varying from 0·16±0·05 to 0·29±0·05 for milk yield, 0·20±0·05 to 0·30±0·08 for fat yield and 0·18±0·06 to 0·27±0·08 for protein yield. The estimates of the genetic correlations between the tests varied from 0·18±0·120 to 0·99±0·002; from 0·44±0·080 to 0·99±0·004; and from 0·41±0·080 to 0·99±0·004, for milk, fat and protein production, respectively, indicating that whatever the selection criterion used, indirect genetic gains can be expected throughout the lactation curve. 相似文献
6.
To determine the relationship of test-day (TD) somatic cell score (SCS) to TD and lactation milk yields, 1,320,590 records from Holstein first and second calvings from 1995 through 2002 were examined. All lactations had recorded yield and SCS for at least the first 4 TD. Least square analyses were conducted for yields on TD 2 through 10 within herd and cow. The model included regressions on current TD SCS and mean SCS of all previous TD with separate estimates by parity; effects for parity and calving year were included as well as regression on days in milk on TD 1. Corresponding analyses were conducted without regression on current SCS. An analysis of lactation yield was performed with a similar model and regression on all TD SCS. The SCS was highest most often on TD 1 for parity 1 (22.5%) and on TD 10 for parity 2 (18.5%). Regression of TD milk yield on mean of previous TD SCS was highest during the latter half of lactation (maximum of -0.346 kg/SCS unit on TD 9) for parity 1 and during TD through 7 (maximum of -0.366 kg/SCS unit on TD 4) for parity 2. Regression of TD yield on current TD SCS tended to be larger for later lactation. Regression of lactation yield on TD SCS was negative and important for TD 1 through 6 for parity 1 and for all TD for parity 2. To minimize milk loss, mastitis control is most important immediately pre- and postcalving for parity 1 and throughout lactation for parity 2. 相似文献
7.
A multivariate linear model was used to estimate sire variance and covariance components and residual variance components for first lactation milk yield and logarithms of yield at three herd production levels using Restricted Maximum Likelihood with the Expectation-Maximization algorithm. Data for four separate analyses were 305-d, mature equivalent first lactation milk records from cows sired artificially in the northeastern United States that freshened in 1970, 1971, 1976, and 1984. Respective numbers of records for each year were 42,618, 40,207, 33,581, and 34,196. Corresponding numbers of sires were 298, 289, 305, and 313. Herd production level was defined by mean yield of all cows freshening in same herd-year-season. For untransformed records sire and residual components of variance increased as mean increased, both within and between years. Correlations between sire effects at different production levels were all above .85. Heritabilities increased as production level increased. These results indicate that it may be necessary to account for heterogeneous genetic and environmental variance in sire evaluations. For logarithms of yield, sire components of variance were similar for each of the three production levels within a year. Residual components for logarithms decreased as production level increased. Change in variance from one production level to another was considerably more for logarithms than for untransformed yields. 相似文献
8.
Odegård J Jensen J Klemetsdal G Madsen P Heringstad B 《Journal of dairy science》2003,86(12):4103-4114
The dataset used in this analysis contained a total of 341,736 test-day observations of somatic cell scores from 77,110 primiparous daughters of 1965 Norwegian Cattle sires. Initial analyses, using simple random regression models without genetic effects, indicated that use of homogeneous residual variance was appropriate. Further analyses were carried out by use of a repeatability model and 12 random regression sire models. Legendre polynomials of varying order were used to model both permanent environmental and sire effects, as did the Wilmink function, the Lidauer-M?ntysaari function, and the Ali-Schaeffer function. For all these models, heritability estimates were lowest at the beginning (0.05 to 0.07) and higher at the end (0.09 to 0.12) of lactation. Genetic correlations between somatic cell scores early and late in lactation were moderate to high (0.38 to 0.71), whereas genetic correlations for adjacent DIM were near unity. Models were compared based on likelihood ratio tests, Bayesian information criterion, Akaike information criterion, residual variance, and predictive ability. Based on prediction of randomly excluded observations, models with 4 coefficients for permanent environmental effect were preferred over simpler models. More highly parameterized models did not substantially increase predictive ability. Evaluation of the different model selection criteria indicated that a reduced order of fit for sire effects was desireable. Models with zeroth- or first-order of fit for sire effects and higher order of fit for permanent environmental effects probably underestimated sire variance. The chosen model had Legendre polynomials with 3 coefficients for sire, and 4 coefficients for permanent environmental effects. For this model, trajectories of sire variance and heritability were similar assuming either homogeneous or heterogeneous residual variance structure. 相似文献
9.
Genetic parameters of milk, fat, and protein yields were estimated in the first 3 lactations for registered Tunisian Holsteins. Data included 140,187; 97,404; and 62,221 test-day production records collected on 22,538; 15,257; and 9,722 first-, second-, and third-parity cows, respectively. Records were of cows calving from 1992 to 2004 in 96 herds. (Co)variance components were estimated by Bayesian methods and a 3-trait-3-lactation random regression model. Gibbs sampling was used to obtain posterior distributions. The model included herd × test date, age × season of calving × stage of lactation [classes of 25 days in milk (DIM)], production sector × stage of lactation (classes of 5 DIM) as fixed effects, and random regression coefficients for additive genetic, permanent environmental, and herd-year of calving effects, which were defined as modified constant, linear, and quadratic Legendre coefficients. Heritability estimates for 305-d milk, fat and protein yields were moderate (0.12 to 0.18) and in the same range of parameters estimated in management systems with low to medium production levels. Heritabilities of test-day milk and protein yields for selected DIM were higher in the middle than at the beginning or the end of lactation. Inversely, heritabilities of fat yield were high at the peripheries of lactation. Genetic correlations among 305-d yield traits ranged from 0.50 to 0.86. The largest genetic correlation was observed between the first and second lactation, potentially due to the limited expression of genetic potential of superior cows in later lactations. Results suggested a lack of adaptation under the local management and climatic conditions. Results should be useful to implement a BLUP evaluation for the Tunisian cow population; however, results also indicated that further research focused on data quality might be needed. 相似文献
10.
The objective of the research was to estimate genetic parameters, such as heritabilities and genetic correlations, using daily test day data for milk yield (MY), milking speed (MS), dry matter intake (DMI), and body weight (BW) using random regression methodology. Data were from first lactation dairy cows (n = 320) from the Chamau research farm of the Swiss Federal Institute of Technology, Switzerland over the period from April 1994 to 2004. All traits were recorded daily using automated machines. Estimated heritabilities (h2) varied from 0.18 to 0.30 (mean h2 = 0.24) for MY, 0.003 to 0.098 (mean h2 = 0.03) for MS, 0.22 to 0.53 (mean h2 = 0.43) for BW, and 0.12 to 0.34 (mean h2 = 0.23) for DMI. A permanent environmental effect was included in both the univariate and bivariate models, but was assumed constant in estimating some genetic correlations because of convergence problems. Estimated genetic correlations varied from 0.31 to 0.41 between MY and MS, from −0.47 to 0.29 between MY and DMI, from −0.60 to 0.54 between MY and BW, from 0.17 to 0.26 between MS and DMI, from −0.18 to 0.25 between MS and BW, and from −0.89 to 0.29 between DMI and BW. Genetic correlations for MY, MS, DMI, and BW from calving to midlactation decreased similarly to 0.40, 0.36, 0.14, and 0.36 and, at the end of the lactation, decreased to −0.06, 0.23, −0.07, and 0.09, respectively. Daily genetic variance-covariance of many functional traits are reported for the first time and will be useful when constructing selection indexes for more than one trait based on longitudinal genetic parameters. 相似文献
11.
Genetic parameters for a multiple-trait multiple-lactation random regression test-day model in Italian Holsteins 总被引:1,自引:0,他引:1
The objectives of this study were to estimate variance components for test-day milk, fat, and protein yields and average daily SCS in 3 subsets of Italian Holsteins using a multiple-trait, multiple-lactation random regression test-day animal model and to determine whether a genetic heterogeneous variance adjustment was necessary. Data were test-day yields of milk, fat, and protein and SCS (on a log2 scale) from the first 3 lactations of Italian Holsteins collected from 1992 to 2002. The 3 subsets of data included 1) a random sample of Holsteins from all herds in Italy, 2) a random sample of Holsteins from herds using a minimum of 75% foreign sires, and 3) a random sample of Holsteins from herds using a maximum of 25% foreign sires. Estimations of variances and covariances for this model were achieved by Bayesian methods using the Gibbs sampler. Estimated 305-d genetic, permanent environmental, and residual variance was higher in herds using a minimum of 75% foreign sires compared with herds using a maximum of 25% foreign sires. Estimated average daily heritability of milk, fat, and protein yields did not differ among subsets. Heritability of SCS in the first lactation differed slightly among subsets and was estimated to be the highest in herds with a maximum of 25% foreign sire use (0.19 ± 0.01). Genetic correlations across lactations for milk, fat, and protein yields were similar among subsets. Genetic correlations across lactations for SCS were 0.03 to 0.08 higher in herds using a minimum of 75% or a maximum of 25% foreign sires, compared with herds randomly sampled from the entire population. Results indicate that adjustment for heterogeneous variance at the genetic level based on the percentage of foreign sire use should not be necessary with a multiple-trait random regression test-day animal model in Italy. 相似文献
12.
H.R. Oliveira D.A.L. Lourenco Y. Masuda I. Misztal S. Tsuruta J. Jamrozik L.F. Brito F.F. Silva F.S. Schenkel 《Journal of dairy science》2019,102(3):2365-2377
Test-day traits are important for genetic evaluation in dairy cattle and are better modeled by multiple-trait random regression models (RRM). The reliability and bias of genomic estimated breeding values (GEBV) predicted using multiple-trait RRM via single-step genomic best linear unbiased prediction (ssGBLUP) were investigated in the 3 major dairy cattle breeds in Canada (i.e., Ayrshire, Holstein, and Jersey). Individual additive genomic random regression coefficients for the test-day traits were predicted using 2 multiple-trait RRM: (1) one for milk, fat, and protein yields in the first, second, and third lactations, and (2) one for somatic cell score in the first, second, and third lactations. The predicted coefficients were used to derive GEBV for each lactation day and, subsequently, the daily GEBV were compared with traditional daily parent averages obtained by BLUP. To ensure compatibility between pedigree and genomic information for genotyped animals, different scaling factors for combining the inverse of genomic (G?1) and pedigree (A?122) relationship matrices were tested. In addition, the inclusion of only genotypes from animals with accurate breeding values (defined in preliminary analysis) was compared with the inclusion of all available genotypes in the analyzes. The ssGBLUP model led to considerably larger validation reliabilities than the BLUP model without genomic information. In general, scaling factors used to combine the G?1 and A?122 matrices had small influence on the validation reliabilities. However, a greater effect was observed in the inflation of GEBV. Less inflated GEBV were obtained by the ssGBLUP compared with the parent average from traditional BLUP when using optimal scaling factors to combine the G?1 and A?122 matrices. Similar results were observed when including either all available genotypes or only genotypes from animals with accurate breeding values. These findings indicate that ssGBLUP using multiple-trait RRM increases reliability and reduces bias of breeding values of young animals when compared with parent average from traditional BLUP in the Canadian Ayrshire, Holstein, and Jersey breeds. 相似文献
13.
Jakobsen JH Madsen P Jensen J Pedersen J Christensen LG Sorensen DA 《Journal of dairy science》2002,85(6):1607-1616
(Co)variance components for milk, fat, and protein yield of 8075 first-parity Danish Holsteins (DH) were estimated in random regression models by REML. For all analyses, the fixed part of the model was held constant, whereas four different functions were applied to model the additive genetic effect and the permanent environment effect. Homogeneous residual variance was assumed throughout lactation. Univariate models were compared using a minimum of -2 ln(restricted likelihood) as the criterion for best fit. Heritabilities as a function of time were calculated from the estimated curve parameters from univariate analyses. Independent of the function applied and the trait in question, heritabilities were lowest in the beginning of the lactation. Heritabilities for persistency of fat yield were slightly higher than heritabilities for persistency of milk and protein yield. Genetic correlations between persistency and 305-d production were higher for protein and milk yield than for fat yield. Bivariate analyses between the production traits were carried out in sire models using the models with the best 3-parameter curve fit in the univariate analyses. Correlations between traits were calculated from covariance components for curve parameters estimated in bivariate analyses. Genetic correlations between milk and protein yield were higher than between milk and fat yield. 相似文献
14.
Genetic evaluation of dairy cattle using test-day models 总被引:9,自引:0,他引:9
Jensen J 《Journal of dairy science》2001,84(12):2803-2812
Recently there has been considerable interest in modeling individual test-day records (TDR) for genetic evaluation of dairy cattle as a replacement for the traditional use of estimated accumulated 305-d yields. Some advantages of test-day models (TDM) include the ability to account for environmental effects of each test day, the ability to model the trajectory of the lactation for individual genotypes or groups of animals, and the possibility of genetic evaluations for persistency of production. Also, the use of test-day models avoids the necessity of extending short lactations on culled animals and animals with records in progress. The disadvantages of TDM include computational difficulties associated with analyzing much larger datasets and the need to estimate many more parameters than in a traditional 305-d lactation model. Several different models have been proposed to model the trajectory of the lactation, including so-called "biological functions," various polynomials and character process models. At present, there is not universal agreement on which models to use in routine prediction of breeding values and better methods to compare models are desirable. Obtaining accurate estimates of the dispersion parameters to use in TDM remains a challenge. Methods used include a two-step procedure in which the dispersion parameters are estimated in a series of multivariate models followed by a reduction in order of fit using covariance functions, and a one-step procedure in which the parameters of TDM are estimated using restricted maximum likelihood or Bayesian methods in a random regression model. Further research should focus on including multiple lactation data and accounting for heterogeneity variance. 相似文献
15.
el-Saied UM Carriedo JA de la Fuente LF San Primitivo F 《Journal of dairy science》1999,82(3):639-644
A total of 3231 lactation records of somatic cell counts (SCC), milk yield, and protein percentage for 2379 Spanish Churra ewes from 10 flocks were used to estimate genetic and environmental parameters. Genetic parameters were estimated by REML with a multitrait repeatability animal model. A lactation measure of SCC was obtained as the mean of test day log SCC adjusted for stage of lactation. Heritabilities for SCC, milk yield, and protein percentage were 0.12, 0.24, and 0.17, respectively. The corresponding repeatabilities were 0.35, 0.49, and 0.38. Heritability and repeatability estimates of SCC obtained from this study fell within the range frequently reported for dairy cows. Therefore, as practiced for dairy cattle, future possibilities for sire evaluation to improve udder health status using lactation measures of SCC for dairy sheep are not rejected, although hygienic practices are regarded as more important. Genetic correlations of SCC with milk yield and protein percentage were -0.15 and -0.03, respectively. The genetic correlation between milk yield and protein percentage was -0.47. The low genetic correlations of SCC with milk yield and protein percentage may indicate that breeding decisions to improve milk and protein yields of Churra ewes are not expected to have an effective correlated response in SCC. 相似文献
16.
Legendre polynomials of orders 3 to 8 in random regression models (RRM) for first-lactation milk production in Canadian Holsteins were compared statistically to determine the best model. Twenty-six RRM were compared using LP of order 5 for the phenotypic age-season groupings. Variance components of RRM were estimated using Bayesian estimation via Gibbs sampling. Several statistical criteria for model comparison were used including the total residual variance, the log likelihood function, Akaike's information criterion, the Bayesian information criterion, Bayes factors, an information-theoretic measure of model complexity, and the percentage relative reduction in complexity. The residual variance always picks the model with the most parameters. The log likelihood and information-theoretic measure picked the model with order 5 for additive genetic effects and order 7 for permanent environmental effects. The currently used model in Canada (order 5 for both additive and permanent environmental effects) was not the best for any single criterion, but was optimal when considering all criteria. 相似文献
17.
Hooijer GA Lubbers RB Ducro BJ van Arendonk JA Kaal-Lansbergen LM van der Lende T 《Journal of dairy science》2001,84(1):286-291
Cystic ovarian disease (COD) is one of the most frequently diagnosed gynecological findings in dairy cattle. It causes temporary infertility and is likely to affect reproduction as well as production parameters in cows. The objectives of this study were to investigate the heritability of COD in a Dutch Black and White population and to estimate the genetic and phenotypic relationships with milk production traits. In the data set used, the overall incidence of COD was 7.7% (1204 COD diagnoses in 15,562 lactations). The farm incidence varied between 1.9 and 11.3%. The estimated heritabilities on the underlying and observable scales were 0.102 and 0.087, respectively. The genetic correlations between COD and 305-d milk, fat, and protein yields were 0.345, 0.379, and 0.441, respectively. We concluded that a genetic predisposition for COD exists in Dutch Black and White dairy cattle. The genetic correlations between COD and yield traits indicate that ongoing selection for production will increase the incidence of COD. 相似文献
18.
Several functions were used to model the fixed part of the lactation curve and genetic parameters of milk test-day records to estimate using French Holstein data. Parametric curves (Legendre polynomials, Ali-Schaeffer curve, Wilmink curve), fixed classes curves (5-d classes), and regression splines were tested. The latter were appealing because they adjusted the data well, were relatively insensitive to outliers, were flexible, and resulted in smooth curves without requiring the estimation of a large number of parameters. Genetic parameters were estimated with an Average Information REML algorithm where the average information matrix and the first derivatives of the likelihood functions were pooled over 10 samples. This approach made it possible to handle larger data sets. The residual variance was modeled as a quadratic function of days in milk. Quartic Legendre polynomials were used to estimate (co)variances of random effects. The estimates were within the range of most other studies. The greatest genetic variance was in the middle of the lactation while residual and permanent environmental variances mostly decreased during the lactation. The resulting heritability ranged from 0.15 to 0.40. The genetic correlation between the extreme parts of the lactation was 0.35 but genetic correlations were higher than 0.90 for a large part of the lactation. The use of the pooling approach resulted in smaller standard errors for the genetic parameters when compared to those obtained with a single sample. 相似文献
19.
Genetic association of clinical mastitis with test-day somatic cell score and milk yield during first lactation of Finnish Ayrshire cows 总被引:1,自引:0,他引:1
In this study the genetic association during lactation of 2 clinical mastitis (CM) traits: CM1 (7 d before to 30 d after calving) and CM2 (31 to 300 d after calving) with test-day somatic cell score (SCS) and milk yield (MY) was assessed using multitrait random regression sire models. The data analyzed were from 27,557 first-lactation Finnish Ayrshire cows. Random regressions on second- and third-order Legendre polynomials were used to model the daily genetic and permanent environmental variances of test-day SCS and MY, respectively, while only the intercept term was fitted for CM. Results showed that genetic correlations between CM and the test-day traits varied during lactation. Genetic correlations between CM1 and CM2 and test-day SCS during lactation varied from 0.41 to 0.77 and from 0.34 to 0.71, respectively. Genetic correlations of test-day MY with CM1 and CM2 ranged from 0.13 to 0.51 and from 0.49 to 0.66, respectively. Correlations between CM1 and SCS were strongest during early lactation, whereas correlations between CM2 and SCS were strongest in late lactation. Genetic correlations lower than unity indicate that CM and SCS measure different aspects of the trait mastitis. Milk yield in early lactation was more strongly correlated with both CM1 and CM2 than milk yield in later lactation. This suggests that selection for higher lactation MY through selection on increased milk yield in early lactation will have a more deleterious effect on genetic resistance to mastitis than selection for higher yield in late lactation. The approach used in this study for the estimation of the genetic associations between test-day and CM traits could be used to combine information from traits with different data structures, such as test-day SCS and CM traits in a multitrait random regression model for the genetic evaluation of udder health. 相似文献
20.
The objectives of this study were to test for heterogeneity of genetic and environmental variance among completed and extended records from different lactations or different days in milk (DIM) and to build a model that accounts for this heterogeneity. A total of 147,457 305-d milk yield records from Danish Jersey cows calving between 1984 and early 1999 from two regions of Denmark were used in this study. Results showed that DIM and parity influenced parameters estimated from an animal model with repeated records. Therefore, the data were analyzed using random-regression models that allow the covariance between measurements to change gradually with DIM and parity. Random regressions were fitted for additive genetic effects and permanent environmental effects using second- or third-order normalized Legendre polynomials for DIM and parity. Variances of random-regression coefficients associated with all orders of the polynomials were significant. Based on these parameter estimates, a covariance function (CF) was defined. The CF showed that the heritability decreases over parities, but within each parity heritability increases with DIM, whereas variance of permanent environmental effects increases over parities and decreases with DIM. Generally, genetic correlations were higher between records with similar DIM and parity. The results indicate that there are problems with the extension procedure used to predict 305-d milk yields. Using the covariance functions estimated in this study, breeding values could be predicted that take into account the covariance structure between records from different parities and different DIM. 相似文献