首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to interpret in detail the experimentally observed current-voltage-temperature (I-V-T) and capacitance-voltage-temperature (C-V-T) results of Al/p-Si metal-semiconductor Schottky barrier diodes (SBDs) we have been examined the samples in the temperature range of 150-375 K. In the calculation method, to confirm the relationship between the I-V-T and C-V-T results, we have reported a modification which includes the ideality factor, n, and tunnelling parameter δχ1/2 in the forward bias current characteristics. In the intermediate bias voltage region (0.1 < V < 0.6 V), the semi-logarithmic plots of the forward I-V-T curves were found to be linear. From the reverse saturation currents I0 obtained by extrapolating the linear region of curves to zero applied voltage, the values of zero bias barrier heights ?B0 were calculated at each temperature. The values of ideality factor calculated from the slope of each curves were plotted as a function of temperature. The values of n are 3.41-1.40 indicating that the Al/p-Si diode does obey the thermionic field emission (TFE) mechanism rather than the other transport mechanism, particularly at low temperature. The high value of ideality factors is attributed to high density of interface states in the SBDs. The temperature dependence energy density distribution profile of interface state was obtained from the forward bias I-V-T measurements by taking into account the bias dependence of the effective barrier height and ideality factor. The interface states density Nss decreasing with increasing temperature was interpreted by the result of atomic restructuring and reordering at the metal-semiconductor interface. After the modification was made to the forward current expression, we obtained a good agreement between the values of barrier height obtained from both methods over a wide temperature.  相似文献   

2.
We have measured the I-V characteristics of Ti/n-GaAs Schottky barrier diodes (SBDs) in the temperature range of 60-320 K by the steps of 20 K. The SBDs have been prepared by magnetron DC sputtering. The ideality factor n of the device has remained almost unchanged between 1.02 and 1.04 from 120 to 320 K, and 1.10 at 100 K. Therefore, it has been said that the experimental I-V data are almost independent of the sample temperature and quite well obey the thermionic emission (TE) model at temperatures above 100 K. Furthermore, the barrier height (BH) Φb0 slightly increased with a decrease in temperature, 320-120 K. The Φb0 versus temperature plot from intercepts of the forward-bias ln I versus V curves has given a BH temperature coefficient of α = −0.090 meV/K. The Norde’s function has been easily carried out to determine the temperature-dependent series resistance values because the TE current dominates in the I-V characteristics. Therefore, the Φb0 versus temperature plot from the Norde’s function has also given a BH temperature coefficient value of α = 0.089 meV/K. Thus, the negligible temperature dependence or BH temperature coefficient close to zero has been attributed to interface defects responsible for the pinning of the Fermi level because their ionization entropy is only weakly dependent on the temperature.  相似文献   

3.
We have identically prepared Au-Be/p-InSe:Cd Schottky barrier diodes (SBDs) (21 dots) on the InSe:Cd substrate. The electrical analysis of Au-Be/p-InSe:Cd structure has been investigated by means of current-voltage (I-V), capacitance-voltage (C-V) and capacitance-frequency (C-f) measurements at 296 K temperature in dark conditions. The effective barrier heights and ideality factors of identically fabricated Au-Be/p-InSe:Cd SBDs have been calculated from their experimental forward bias current-voltage (I-V) characteristics by applying a thermionic emission theory. The BH values obtained from the I-V characteristics have varied between 0.74 eV and 0.82 eV with values of ideality factors ranging between 1.49 and 1.11 for the Au-Be/p-InSe:Cd SBDs. It has been determined a lateral homogeneous barrier height value of approximately 0.82 eV for these structures from the experimental linear relationship between barrier heights and ideality factors. The Schottky barrier height (SBH) value has been obtained from the reverse-bias C-V characteristics of Au-Be/p-InSe:Cd SBD for only one diode. At high currents in the forward direction, the series resistance effect has been observed. The value of series resistance has been determined from I-V measurements using Cheung’s and Norde’s methods.  相似文献   

4.
The temperature dependences of current-voltage (I-V) and capacitance-voltage (C-V) characteristics of the gold Schottky contacts on moderately doped n-InP (Au/MD n-InP) Schottky barrier diodes (SBDs) have been systematically investigated in the temperature range of 60-300 K. The main diode parameters, ideality factor (n) and zero-bias barrier height (apparent barrier height) were found to be strongly temperature dependent and while the decreases, the n and the increase with decreasing temperature. According to Thermionic Emission (TE) theory, the slope of the conventional Richardson plot [In(J0/T2) vs. 1000/T] should give the barrier height. However, the experimental data obtained do not correlate well with a straight line below 160 K. This behaviour has been interpreted on the basis of standard TE theory and the assumption of a Gaussian distribution of the barrier heights due to barrier inhomogeneities that persist at the metal-semiconductor interface. The linearity of the apparent barrier height vs. 1/(2kT) plot that yields a mean barrier height of 0.526 eV and a standard deviation (σs0) of 0.06 eV, was interpreted as an evidence to apply the Gaussian distribution of the barrier height. Furthermore, modified Richardson plot [ vs. 1/T] has a good linearity over the investigated temperature range and gives the and the Richardson constant (A) values as 0.532 eV and 15.90 AK−2cm−2, respectively. The mean barrier heights obtained from both plots are appropriate with each other and the value of A obtained from the modified Richardson plot is close to the theoretical value of 9.4 AK−2cm−2 for n-InP. From the C-V characteristics, measured at 1 MHz, the capacitance was determined to increase with increasing temperature. C-V measurements have resulted in higher barrier heights than those obtained from I-V measurements. The discrepancy between Schottky barrier heights(SBHs) obtained from I-V and C-V measurements was also interpreted. As a result, it can be concluded that the temperature dependent characteristic parameters for Au/MD n-InP SBDs can be successfully explained on the basis of TE mechanism with Gaussian distribution of the barrier heights.  相似文献   

5.
The current-voltage (I-V) characteristics of metal-insulator-semiconductor Al/SiO2/p-Si (MIS) Schottky diodes were measured at room temperature (300 K). In addition, capacitance-voltage-frequency (C-V-f) characteristics are investigated by considering the interface states (Nss) at frequency range 100 kHz to 1 MHz. The MIS Schottky diode having interfacial insulator layer thickness of 33 Å, calculated from the measurement of the insulator capacitance in the strong accumulation region. At each frequency, the measured capacitance decreases with increasing frequency due to a continuous distribution of the interface states. From the I-V characteristics of the MIS Schottky diode, ideality factor (n) and barrier height (Φb) values of 1.766 and 0.786 eV, respectively, were obtained from a forward bias I-V plot. In addition, the interface states distribution profile as a function of (Ess − Ev) was extracted from the forward bias I-V measurements by taking into account the bias dependence of the effective barrier height (Φe) for the Schottky diode. The diode shows non-ideal I-V behaviour with ideality factor greater than unity. This behaviour is attributed to the interfacial insulator layer, the interface states and barrier inhomogeneity of the device. As expected, the C-V curves gave a barrier height value higher than those obtained from I-V measurements. This discrepancy is due to the different nature of the I-V and C-V measurement techniques.  相似文献   

6.
Nontrivial negative capacitance (NC) effect, observed in a-Si:H/c-Si heterostructure devices, is discussed emphasizing the theoretical interpretation of experimental data. To explain NC effect, we have performed dark current voltage (I-V) and admittance measurements (C-V, G-V, C-f and G-f). The calculated values of series resistance (Rs) and barrier height (ΦBo) have the values from 100 to 114.7 Ω and 0.94 to 0.83 eV, respectively. Also, below 50% helium dilution rate, diode ideality factor (n) becomes bigger than 2, because tunneling at junction interface plays a major role. The measured room temperature (294 K) dark I-V result has been used during the fitting process for suggested capacitance model (Eq. (18)). The measured NC values exhibit strongly voltage depended behavior. This unexpected behavior is attributed to the presence of inductively coupled space charge region which might possibly be stemmed from the helium diluted a-Si:H material. It is seen that the measured NC values are well fitted with suggested capacitance model (Eq. (18)). Application of suggested correction formula on to experimental C-V data yields satisfactory results. It is shown that the calculated inductance values of the investigated device range from 10 to 42 μH and after correction, NC values are no longer observed in the Cd-V data.  相似文献   

7.
The junction characteristics of the organic compound methyl-red film (2-[4-(dimethylamino)phenylazo]benzoic acid) on a p-type Si substrate have been studied. The current-voltage characteristics of the device have rectifying behavior with a potential barrier formed at the interface. The barrier height and ideality factor values of 0.73 eV and 3.22 for the structure have been obtained from the forward bias current-voltage (I-V) characteristics. The interface state energy distribution and their relaxation time have ranged from 1.68 × 1012 cm−2 eV−1 and 1.68 × 10−3 s in (0.73-Ev) eV to 1.80 × 1012 cm−2 eV−1 and 5.29 × 10−5 s in (0.43-Ev) eV, respectively, from the forward bias capacitance-frequency and conductance-frequency characteristics. Furthermore, the relaxation time of the interface states shows an exponential rise with bias from (0.43-Ev) eV towards (0.73-Ev) eV.  相似文献   

8.
High temperature silicon carbide diodes with nickel silicide Schottky contacts were fabricated by deposition of titanium-nickel metal film on 4H-SiC epitaxial wafer followed by annealing at 550 °C in vacuum. Room temperature boron implantation have been used to form single zone junction termination extension. 4H-SiC epitaxial structures designed to have theoretical parallel-plain breakdown voltages of 1900 and 3600 V have been used for this research. The diodes revealed soft recoverable avalanche breakdown at voltages of 1450 and 3400 V, respectively, which are about 80% and 95% of theoretical values. I-V characteristics of fabricated 4H-SiC Schottky diodes have been measured at temperatures from room temperature up to 400 °C. The diodes revealed unchangeable barrier heights and ideality factors as well as positive coefficients of breakdown voltage.  相似文献   

9.
This paper summarizes the first results of characteristics parameters obtained from current-voltage (I-V) measurements for Ag/p-SnS and Ag/p-SnSe structure. The reverse and forward bias current-voltage characteristics of Ag Schottky contacts on a Bridgman-Stockbarger grown p-SnS and p-SnSe layered semiconducting material have been measured at various temperatures. We have tried to determine contact properties such as apparent barrier heights ΦB0, ideality factor n and series resistance Rs. The apparent barrier height and ideality factor calculated by using thermionic emission theory were found to be strongly temperature dependent. Evaluating forward I-V data reveals a decrease at the apparent barrier height, but an increase at the ideality factor with decrease in temperature. It is shown that the values of Rs estimated from Cheung’s method were strongly temperature dependent and decreased with increasing temperature. It has been found that both contacts are of Schottky type.  相似文献   

10.
We have shown by numerical simulations of I-V-T curves that the ideality factor of inhomogeneous Schottky diodes does not increase for decreasing temperature to such extent as is commonly observed for Schottky diodes in experiment. The main consequence of such a result is that in spite of the fact that the barrier height inhomogeneities fullfil the conditions for barrier height lowering for decreasing temperature they might not be a general or the only reason for occuring of this effect in experimental structures. We found out much slower ideality factor temperature dependence than reported in the literature and the dependence was even not monotonous for simulation conditions used. We conclude that some other reason as barrier inhomogeneity is responsible for ideality factor temperature dependence.  相似文献   

11.
Schottky contacts were fabricated on n-type GaN using a Cu/Au metallization scheme, and the electrical and structural properties have been investigated as a function of annealing temperature by current-voltage (I-V), capacitance-voltage (C-V), Auger electron spectroscopy (AES) and X-ray diffraction (XRD) measurements. The extracted Schottky barrier height of the as-deposited contact was found to be 0.69 eV (I-V) and 0.77 eV (C-V), respectively. However, the Schottky barrier height of the Cu/Au contact slightly increases to 0.77 eV (I-V) and 1.18 eV (C-V) when the contact was annealed at 300 °C for 1 min. It is shown that the Schottky barrier height decreases to 0.73 eV (I-V) and 0.99 eV (C-V), 0.56 eV (I-V) and 0.87 eV (C-V) after annealing at 400 °C and 500 °C for 1 min in N2 atmosphere. Norde method was also used to extract the barrier height of Cu/Au contacts and the values are 0.69 eV for the as-deposited, 0.76 eV at 300 °C, 0.71 eV at 400 °C and 0.56 eV at 500 °C which are in good agreement with those obtained by the I-V method. Based on Auger electron spectroscopy and X-ray diffraction results, the formation of nitride phases at the Cu/Au/n-GaN interface could be the reason for the degradation of Schottky barrier height upon annealing at 500 °C.  相似文献   

12.
Electrical properties of Ta/n-Si and Ta/p-Si Schottky barrier diodes obtained by sputtering of tantalum (Ta) metal on semiconductors have been investigated. The characteristic parameters of these contacts like barrier height, ideality factor and series resistance have been calculated using current voltage (I-V) measurements. It has seen that the diodes have ideality factors more than unity and the sum of their barrier heights is 1.21 eV which is higher than the band gap of the silicon (1.12 eV). The results have been attributed the effects of inhomogeneities at the interface of the devices and native oxide layer. In addition, the barrier height values determined using capacitance-voltage (C-V) measurements have been compared the ones obtained from I-V measurements. It has seen that the interface states have strong effects on electrical properties of the diodes such as C-V and Rs-V measurements.  相似文献   

13.
We have identically prepared as many as eight Ni/n-GaAs/In Schottky barrier diodes (SBDs) using an n-type GaAs substrate with a doping density of about 7.3 × 1015 cm−3. The thermal stability of the Ni/n-GaAs/In Schottky diodes has been investigated by means of current-voltage (I-V) techniques after annealed for 1 min in N2 atmosphere from 200 to 700 °C. For Ni/n-GaAs/In SBDs, the Schottky barrier height Φb and ideality factor n values range from 0.853 ± 0.012 eV and 1.061 ± 0.007 (for as-deposited sample) to 0.785 ± 0.002 eV and 1.209 ± 0.005 (for 600 °C annealing). The ideality factor values remained about unchanged up to 400 °C annealing. The I-V characteristics of the devices deteriorated at 700 °C annealing.  相似文献   

14.
The electrical and photovoltaic properties of AuSb/n-Si/chitosan/Ag diode have been investigated. The ideality factor, barrier height and Richardson constant values of the diode at room temperature were found to be 1.91, 0.88 eV and 121.4 A/cm2 K2, respectively. The ideality factor of the diode is higher than unity, suggesting that the diode shows a non-ideal behaviour due to series resistance and barrier height inhomogeneities. The barrier height and ideality factor values of Ag/CHT/n-Si diode at room temperature are significantly larger than that of the conventional Ag/n-Si Schottky diode. The φB value obtained from C-V measurement is higher than that of φB value obtained from I-V measurement. The discrepancy between φB(C-V) and φB(I-V) barrier height values can be explained by Schottky barrier height inhomogeneities. AuSb/n-Si/chitosan/Ag diode indicates a photovoltaic behaviour with open circuit voltage (Voc = 0.23 V) and short-circuit current density (Jsc = 0.10 μA/cm−2) values.  相似文献   

15.
This is the first time; it was employed Successive Ionic Layer Adsorption and Reaction (SILAR) method in order to prepare Zn/ZnO/n-Si/Au-Sb sandwich structure. The ZnO interface layer was directly formed on n-type Si substrate using SILAR method. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies were showed that the film is covered well on n-type Si substrate and have polycrystalline structure. An Au-Sb electrode was used as an ohmic contact. The Zn/ZnO/n-Si/Au-Sb sandwich structure demonstrated clearly rectifying behavior by the current-voltage (I-V) curves studied at room temperature. The sample temperature effect on the current-voltage (I-V) characteristics of Zn/ZnO/n-Si/Au-Sb structure was investigated in temperature range 80-320 K by steps of 20 K. The parameters such as barrier height, ideality factor and series resistance of this structure were calculated from the forward bias I-V characteristics as a function of sample temperature. It was seen that the ideality factor and series resistance were decreased; the barrier height were increased with increasing temperature. The experimental values of barrier height and ideality factor for this device were calculated as 0.808 eV and 1.519 at 320 K; 0.220 eV and 4.961 at 80 K, respectively. These abnormal behaviors can be explained by the barrier inhomogeneities at the metal-semiconductor (M-S) interface.  相似文献   

16.
In order to evaluate current conduction mechanism in the Au/n-GaAs Schottky barrier diode (SBD) some electrical parameters such as the zero-bias barrier height (BH) Φbo(IV) and ideality factor (n) were obtained from the forward bias current–voltage (IV) characteristics in wide temperature range of 80–320 K by steps of 10 K. By using the thermionic emission (TE) theory, the Φbo(IV) and n were found to depend strongly on temperature, and the n decreases with increasing temperature while the Φbo(IV) increases. The values of Φbo and n ranged from 0.600 eV and 1.51(80 K) to 0.816 eV and 1.087 (320 K), respectively. Such behavior of Φbo and n is attributed to Schottky barrier inhomogeneities by assuming a Gaussian distribution (GD) of BHs at Au/n-GaAs interface. In the calculations, the electrical parameters of the experimental forward bias IV characteristics of the Au/n-GaAs SBD with the homogeneity in the 80–320 K range have been explained by means of the TE, considering GD of BH with linear bias dependence.  相似文献   

17.
The current-voltage (I-V) characteristics of Al/p-Si Schottky barrier diode (SBD) with native insulator layer were measured in the temperature range of 178-440 K. The estimated zero-bias barrier height ΦB0 and the ideality factor n assuming thermionic emission (TE) theory have shown strong temperature dependence. Evaluation of the forward I-V data have revealed an increase of zero-bias barrier height ΦB0 but the decrease of ideality factor n with the increase in temperature. The experimental and theoretical results of the tunneling current parameter Eo against kT/q were plotted to determine predominant current-transport mechanism. But the experimental results were found to be disagreement with the theoretical results of the pure TE, the thermionic-field emission (TFE) and the field emission (FE) theories. The conventional Richardson plot has exhibited non-linearity below 240 K with the linear portion corresponding to the activation energy of 0.085 eV and Richardson constant (A*) value of 2.48 × 10−9 A cm−2 K−2 which is much lower than the known value of 32 A cm−2 K−2 for holes in p-type Si. Such behaviours were attributed to Schottky barrier inhomogeneities by assuming a Gaussian distribution of barrier heights (BHs) due to barrier height inhomogeneities that prevail at interface. Thus, the modified ln(Io/T2) − qo2/2k2T2 vs q/kT has plotted. Then A* was calculated as 38.79 A cm−2 K−2 without using the temperature coefficient of the barrier height. This value of the Richardson constant 38.79 A cm−2 K−2 is very close to the theoretical value of 32 A K−2 cm−2 for p-type Si. Hence, it has been concluded that the temperature dependence of the forward I-V characteristics of the Al/p-Si Schottky barrier diodes with native insulator layer can be successfully explained on the basis of TE mechanism with a Gaussian distribution of the barrier heights.  相似文献   

18.
p-n Junctions based on zinc oxide (ZnO) and copper-phthalocyanine (CuPc) were fabricated using pulsed laser deposition and thermal evaporator techniques, respectively. Current-voltage (I-V) characteristics of the ZnO-CuPc junction showed rectifying behavior. Various junction parameters such as barrier height and ideality factor were calculated using I-V data and observed to be 0.63 ± 0.02 eV and 4.0 ± 0.3, respectively. Cheung and Norde’s method were used to compare the junction parameters obtained by I-V characteristics.  相似文献   

19.
In this study, it has been investigated the electrical characteristics of identically prepared Al/p-InP Schottky diodes. The barrier heights (BHs) and ideality factors of all devices have been calculated from the electrical characteristics. Although the diodes were all identically prepared, there was a diode-to-diode variation: the effective barrier heights ranged from 0.83 ± 0.01 to 0.87 ± 0.01 eV, and the ideality factors ranged from 1.13 ± 0.02 to 1.21 ± 0.02. The barrier height vs. ideality factor plot has been plotted for the devices. Lateral homogeneous BH was calculated as a value of 0.86 eV from the observed linear correlation between BH and ideality factor, which can be explained by laterally inhomogeneities of BHs. The values of barrier height and free carrier concentration yielded from the reverse bias capacitance-voltage (C-V) measurements ranged from 0.86 ± 0.04 to 1.00 ± 0.04 eV and from (3.47 ± 0.39) × 1017 to (4.90 ± 0.39) × 1017 cm−3, respectively. The mean barrier height and mean acceptor doping concentration from C-V characteristics have been calculated as 0.91 eV and 3.99 × 1017 cm−3, respectively.  相似文献   

20.
In this study, CdS thin films have been deposited on n-Si substrate using a successive ionic layer adsorption and reaction (SILAR) method at room temperature. Structural properties have been investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements. The XRD and SEM investigations show that films are covered well, polycrystalline structure and good crystallinity levels. The Cd/CdS/n-Si/Au-Sb structures (28 dots) have been identically prepared by the SILAR method. The effective barrier heights and ideality factors of these structures have been obtained from forward bias current-voltage (I-V) and reverse bias capacitance voltage (C-V) characteristics. The barrier height (BH) for the Cd/CdS/n-Si/Au-Sb structure calculated from the I-V characteristics have ranged from 0.664 eV to 0.710 eV, and the ideality factor from 1.190 to 1.400. Lateral homogeneous barrier height has been determined approximately 0.719 eV from the experimental linear relationship between BHs and ideality factors. The experimental BH and ideality factor distributions obtained from the I-V characteristics have been fitted by a Gaussian function, and their means of values have been found to be (0.683 ± 0.01) eV and (1.287 ± 0.05), respectively. The barrier height values obtained from the reverse bias C−2-V characteristics have ranged from 0.720 eV to 0.865 eV and statistical analysis yields the mean (0.759 ± 0.02) eV. Additionally, a doping concentration obtained from C−2-V characteristics has been calculated (8.55 ± 1.62) × 1014 cm−3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号