首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminum nitride (AlN) films were deposited by dc reactive magnetron sputtering on p-Si-(1 0 0) substrate in Ar-N2 gas mixtures. The effects of nitrogen concentration and sputtering power on AlN films deposition rate, crystallographic orientation, refractive index, and surface morphology are investigated by means of several characterization techniques. The results show that AlN films reasonably textured in (0 0 2) orientation with low surface roughness can be obtained with the deposition rate as high as 70 nm/min by the control of either target power or N2 concentration in the gas mixture. Increasing the dc discharge power, Al atoms are not completely nitridized and the Al phases appear, as well as the AlN phases. MIS (Metal-Insulator-Semiconductor) structures were fabricated and electrically evaluated by I-V (current-voltage) and C-V (capacitance-voltage) measurements at high frequency (1 MHz). The results obtained from C-V curves indicate that charges at the dielectric/semiconductor interface occur, and the dielectric constant values (extracted under strong accumulation region) are compatible with those found in literature.  相似文献   

2.
The metal-oxide-semiconductor (MOS) structures with insulator layer thickness range of 55-430 Å were stressed with a bias of 0 V during 60Co-γ ray source irradiation with the dose rate of 2.12 kGy/h and the total dose range was 0-5×105 Gy. The real part of dielectric constant ε′, dielectric loss ε″, dielectric loss tangent tanδ and the dc conductivity σdc were determined from against frequency, applied voltage, dose rate and thickness of insulator layer at room temperature for Au/SnO2/n-Si (MOS) structures from C-V capacitance and G-V conductance measurements in depletion and weak inversion before and after irradiation. The dielectric properties of MOS structures have been found to be strongly influenced by the presence of dominant radiation-induced defects. The frequency, applied voltage, dose rate and thickness dependence of ε′, ε″, tanδ and σdc are studied in the frequency (500 Hz-10 MHz), applied voltage (−10 to 10 V), dose rate (0-500 kGy) and thickness of insulator layer (55-430 Å) range, respectively. In general, dielectric constant ε′, dielectric loss ε″ and dielectric loss tangent are found to decrease with increasing the frequency while σdc is increased. Experimental results shows that the interfacial polarization can be more easily occurred at the lower frequency and/or with the number of density of interface states between Si/SnO2 interfaces, consequently, contribute to the improvement of dielectric properties of Au/SnO2/n-Si (MOS) structures.  相似文献   

3.
The admittance spectra and current–voltage (IV) characteristics are reported of metal–insulator–metal (MIM) and metal–insulator–semiconductor (MIS) capacitors employing cross-linked poly(amide–imide) (c-PAI) as the insulator and poly(3-hexylthiophene) (P3HT) as the active semiconductor. The capacitance of the MIM devices are constant in the frequency range from 10 Hz to 100 kHz, with tan δ values as low as 7 × 10−3 over most of the range. Except at the lowest voltages, the IV characteristics are well-described by the Schottky equation for thermal emission of electrons from the electrodes into the insulator. The admittance spectra of the MIS devices displayed a classic Maxwell–Wagner frequency response from which the transverse bulk hole mobility was estimated to be ∼2 × 10−5 cm2 V−1s−1 or ∼5 × 10−8 cm2 V−1s−1 depending on whether or not the surface of the insulator had been treated with hexamethyldisilazane (HMDS) prior to deposition of the P3HT. From the maximum loss observed in admittance-voltage plots, the interface trap density was estimated to be ∼5 × 1010 cm−2 eV−1 or ∼9 × 1010 cm−2 eV−1 again depending whether or not the insulator was treated with HMDS. We conclude, therefore, that HMDS plays a useful role in promoting order in the P3HT film as well as reducing the density of interface trap states. Although interposing the P3HT layer between the insulator and the gold electrode degrades the insulating properties of the c-PAI, nevertheless, they remain sufficiently good for use in organic electronic devices.  相似文献   

4.
The electrical and dielectric properties of Al/SiO2/p-Si (MOS) structures were studied in the frequency range 10 kHz-10 MHz and in the temperature range 295-400 K. The interfacial oxide layer thickness of 320 Å between metal and semiconductor was calculated from the measurement of the oxide capacitance in the strong accumulation region. The frequency and temperature dependence of dielectric constant (ε′), dielectric loss (ε″), dielectric loss tangent (tan δ) and the ac electrical conductivity (σac) are studied for Al/SiO2/p-Si (MOS) structure. The electrical and dielectric properties of MOS structure were calculated from C-V and G-V measurements. Experimental results show that the ε′ and εare found to decrease with increasing frequency while σac is increased, and ε′, ε″, tan δ and σac increase with increasing temperature. The values of ε′, ε″ and tan δ at 100 kHz were found to be 2.76, 0.17 and 0.06, respectively. The interfacial polarization can be more easily occurred at low frequencies, and the number of interface state density between Si/SiO2 interface, consequently, contributes to the improvement of dielectric properties of Al/SiO2/p-Si (MOS) structure. Also, the effects of interface state density (Nss) and series resistance (Rs) of the sample on C-V characteristics are investigated. It was found that both capacitance C and conductance G were quite sensitive to temperature and frequency at relatively high temperatures and low frequencies, and the Nss and Rs decreased with increasing temperature. This is behavior attributed to the thermal restructuring and reordering of the interface. The C-V and G/ω-V characteristics confirmed that the Nss, Rs and thickness of insulator layer (δ) are important parameters that strongly influence both the electrical and dielectric parameters and conductivity in MOS structures.  相似文献   

5.
The dielectric properties of Al/Si3N4/p-Si(1 0 0) MIS structure were studied from the C-V and G-V measurements in the frequency range of 1 kHz to 1 MHz and temperature range of 80-300 K. Experimental results shows that the ε′ and ε″ are found to decrease with increasing frequency while the value of ε′ and ε″ increase with increasing temperature, especially, above 160 K. As typical values, the dielectric constant ε′ and dielectric loss ε″ have the values of 7.49, 1.03 at 1 kHz, and only 0.9, 0.02 at 1 MHz, respectively. The ac electrical conductivity (σac) increases with both increasing frequency and temperature. The activation energy of 24 meV was calculated from Arrhenius plot at 1 MHz. The results indicate that the interfacial polarization can be more easily occurred at low frequencies and high temperatures.  相似文献   

6.
High-k insulators for the next generation (sub-32 nm CMOS (complementary metal-oxide-semiconductor) technology), such as titanium-aluminum oxynitride (TAON) and titanium-aluminum oxide (TAO), have been obtained by Ti/Al e-beam evaporation, with additional electron cyclotron resonance (ECR) plasma oxynitridation and oxidation on Si substrates, respectively. Physical thickness values between 5.7 and 6.3 nm were determined by ellipsometry. These films were used as gate insulators in MOS capacitors fabricated with Al electrodes, and they were used to obtain capacitance-voltage (C-V) measurements. A relative dielectric constant of 3.9 was adopted to extract the equivalent oxide thickness (EOT) of films from C-V curves under strong accumulation condition, resulting in values between 1.5 and 1.1 nm, and effective charge densities of about 1011 cm−2. Because of these results, nMOSFETs with Al gate electrode and TAON gate dielectric were fabricated and characterized by current-voltage (I-V) curves. From these nMOSFETs electrical characteristics, a sub-threshold slope of 80 mV/dec and an EOT of 0.87 nm were obtained. These results indicate that the obtained TAON film is a suitable gate insulator for the next generation (MOS) devices.  相似文献   

7.
The current-voltage (I-V) characteristics of metal-insulator-semiconductor Al/SiO2/p-Si (MIS) Schottky diodes were measured at room temperature (300 K). In addition, capacitance-voltage-frequency (C-V-f) characteristics are investigated by considering the interface states (Nss) at frequency range 100 kHz to 1 MHz. The MIS Schottky diode having interfacial insulator layer thickness of 33 Å, calculated from the measurement of the insulator capacitance in the strong accumulation region. At each frequency, the measured capacitance decreases with increasing frequency due to a continuous distribution of the interface states. From the I-V characteristics of the MIS Schottky diode, ideality factor (n) and barrier height (Φb) values of 1.766 and 0.786 eV, respectively, were obtained from a forward bias I-V plot. In addition, the interface states distribution profile as a function of (Ess − Ev) was extracted from the forward bias I-V measurements by taking into account the bias dependence of the effective barrier height (Φe) for the Schottky diode. The diode shows non-ideal I-V behaviour with ideality factor greater than unity. This behaviour is attributed to the interfacial insulator layer, the interface states and barrier inhomogeneity of the device. As expected, the C-V curves gave a barrier height value higher than those obtained from I-V measurements. This discrepancy is due to the different nature of the I-V and C-V measurement techniques.  相似文献   

8.
This paper deals with the electrical wideband frequency and in situ characterization of aluminum nitride (AlN) material. This material is interesting for bulk acoustic wave (BAW) or surface acoustic wave (SAW) devices. In a first step, low frequency characterizations allow to know current versus voltage characteristics, leakages and temperature dependence of the electrical properties. Then, AlN properties in an integrated “metal/insulator/metal” configuration are characterized using MIM waveguide and RLCG parameters are measured up to 20 GHz. An electrical field breakdown of 7.5 MV cm−1 and a relative permittivity between 9 and 10 are extracted. Acoustic resonances, validated with Mason one-dimensional simulation, occur near 5 and 12 GHz. Finally, the MIM devices performances are determined in a wideband frequency: from 1 MHz to 10 GHz.  相似文献   

9.
The thermal behavior of (PVP + PVA) polyblend film have been examined using differential scanning calorimetry and scanning electron microscopy. Capacitance and loss tangent values of polyvinyl pyrrolidone (PVP) + polyvinyl alcohol (PVA) polyblend film were measured in the frequency range 1-100 kHz and temperature range 298-423 K. Dielectric permittivity of real part (ε′) was obtained from capacitance data and dielectric permittivity of imaginary part (ε″) was obtained from real part of dielectric permittivity and loss tangent values. The decrease in dielectric permittivity was observed with increasing frequency and also observed increase in dielectric permittivity with increasing temperature. The complex dielectric constant (ε*) has been described by the electric modulus M* = (1/ε*) = M′ + iM″. The data of M* has been analysed by the stretched exponential decay of the electric field, Φ(t) = exp−(t/τ0)β.  相似文献   

10.
Epitaxial silver tantalate-niobate Ag(Ta,Nb)O3 (ATN) films have been grown on LaAlO3(0 0 1) single crystals by pulsed laser ablation of stoichiometric AgTa0.38Nb0.62O3 ceramic target. Extensive X-ray diffraction analysis reveals epitaxial relationship between the ATN film and LaAlO3(0 0 1) substrate. Micrometer size interdigital capacitor structures have been defined photolithographically on the top surface of ATN films. ATN/LaAlO3 thin-film capacitors exhibit superior overall performance: loss tangent as low as 0.0033 at 1 MHz, dielectric permittivity 224 at 1 kHz, weak frequency dispersion of 5.8% in 1 kHz to 1 MHz range. Dielectric permittivity and loss tangent were also measured at the microwave range. Conformal mapping techniques were employed to extract dielectric properties of ATN film on substrate at the microwave frequency range. Theoretical properties of conformal mapping techniques for interdigital capacitors and CPW microstrip lines were discussed.  相似文献   

11.
The voltage (V) and frequency (f) dependence of dielectric characteristics such as dielectric constant (ε′), dielectric loss (ε), dielectric loss tangent (tan δ) and real and imaginary part of electrical modulus (Μ′ and M) of the (Ni/Au)/GaN/Al0.3Ga0.7N heterostructures have been investigated by using experimental admittance spectroscopy (capacitance-voltage (C-V) and conductance-voltage (G/w-V)) measurements at room temperature. Experimental results show that the values of the ε′, ε, tan δ and the real and imaginary parts of the electric modulus (Μ′ and M) obtained from the C and G/w measurements were found to be strong function of frequency and applied bias voltage especially in depletion region at low frequencies. These changes in dielectric parameters can be attributed to the interfacial GaN cap layer, interface polarization and a continuous density distribution of interface states and their relaxation time at metal/semiconductor interface. While the values of the ε′ decrease with increasing frequencies, tan δ, Μ′ and M increase with the increasing frequency. Also, the dielectric loss (ε) have a local maximum at about frequency of 100 kHz. It can be concluded that the interface polarization can occur more easily at low frequencies with the number of interface states located at the metal/semiconductor interface.  相似文献   

12.
The electrical and dielectric properties of Au/PVA (Ni, Zn-doped)/n-Si Schottky diodes (SDs) were studied in the temperature range of 80-400 K. The investigation of various SDs fabricated with different types of interfacial layer is important for understanding the electrical and dielectric properties of SDs. Therefore, in this study polyvinyl alcohol (PVA) film was used as an interfacial layer between metal and semiconductor. The electrical and dielectric properties of Au/PVA (Ni, Zn-doped)/n-Si SDs were calculated from the capacitance-voltage (C-V) and conductance-voltage (G/w-V) measurements. The effects of interface state density (Nss) and series resistance (Rs) on C-V characteristics were investigated in the wide temperature range. It was found that both of the C-V-T and G/w-V-T curves included two abnormal regions and one intersection point. The dielectric constant (ε″), dielectric loss (ε″), dielectric loss tangent (tan δ) and the ac electrical conductivity (σac) obtained from the measured capacitance and conductance were studied for Au/PVA (Ni, Zn-doped)/n-Si SDs. Experimental results show that the values of ε′, ε″ and tan δ are a strong function of the temperature. Also, the results indicate the interfacial polarization can be more easily occurred at high temperatures.  相似文献   

13.
In this study, the frequency dependent of the forward and reverse bias capacitance-voltage (C-V) and conductance-voltage (G/ω - V) measurements of Al/SiO2/p-Si (MIS) structures are carried out in frequency range of 10 kHz-10 MHz. The frequency dependence of series resistance (Rs), density of surface states (Nss), dielectric constant (ε′), dielectric loss (ε″), dielectric loss tangent (tan δ) and the ac electrical conductivity (σdc) are studied for these structure at room temperature. Experimental results show that both electrical and dielectric parameters were strongly frequency and voltage dependent. The ε′ and ε″ are found to decrease with increasing frequency while σac is increased. Also, both the effects of surface states Nss and Rs on C-V and G/ω - V characteristics are investigated. It has been seen that the measured C and G decrease with increasing frequency due to a continuous distribution of Nss in frequency range of 10 kHz-1 MHz. The effect of Rs on the C and G are found noticeable at high frequencies. Therefore, the high frequencies C and G values measured under both reverse and forward bias were corrected for the effect of series resistance Rs to obtain real MIS capacitance Cc and conductance Gc using the Nicollian and Goetzberger technique. The distribution profile of Rs-V gives a peak in the depletion region at low frequencies and disappears with increasing frequencies.  相似文献   

14.
The on-wafer serial connection of two capacitors (stacked capacitors) is attractive for two reasons: on one hand the intrinsic reliability and especially the immunity against high voltage pulses increases and on the other hand the early fail risk decreases tremendously. The intrinsic and extrinsic reliability of stacked capacitors are demonstrated using the example of a metal insulator metal capacitor (MIMCAP) with Al2O3 dielectric. The intrinsic reliability of a stacked capacitor, where each of the capacitors uses a dielectric of thickness thk, is equal to the intrinsic reliability of a single capacitor with twice the dielectric thickness 2 * thk. The reduction of early fails for a stacked capacitor is a probability effect: if a single capacitor has the probability p to fail early and an early fail of the stacked capacitor is the combination of two single capacitors each of which contains an early fail, then the stacked capacitor fails early with a probability of p2. This basic idea is checked by voltage ramp experiments on single and stacked MIM capacitors, where the single MIM capacitors show besides the intrinsic branch a prominent extrinsic branch.  相似文献   

15.
The dielectric properties and AC electrical conductivity ac)of the (Ni/Au)/Al0.22Ga0.78N/AlN/GaN heterostructures, with and without the SiNx passivation, have been investigated by capacitance-voltage and conductance-voltage measurements in the wide frequency (5kHz-5 MHz) and temperature (80-400 K) range. The experimental values of the dielectric constant (ε′), dielectric loss (ε′′), loss tangent (tanδ), σac and the real and imaginary part of the electric modulus (M′ and M′′) were found to be a strong function of frequency and temperature. A decrease in the values of ε′ and ε′′ was observed, in which they both showed an increase in frequency and temperature. The values of M′ and M′′ increase with increasing frequency and temperature. The σac increases with increasing frequency, while it decreases with increasing temperature. It can be concluded, therefore, that the interfacial polarization can occur more easily at low frequencies and temperatures with the number of interface states density located at the metal/semiconductor interface. It contributes to the ε′ and σac.  相似文献   

16.
Dielectric properties and ac electrical conductivity of the Al/SiO2/p-Si (MIS) Schottky diodes were studied in the frequency and temperature range of 10 kHz-1 MHz and 300-400 K, respectively. Experimental results show that the dielectric constant (ε′), dielectric loss (ε″), loss tangent (tan δ), ac electrical conductivity (σac) and the electric modulus were found a strong function of frequency and temperature. The values of the ε′, ε″ and tan δ decrease with increasing frequencies due to the interface states capacitance and a decrease in conductance with increasing frequency. Also, these values increase with increasing temperature. The σac is found to increase with increasing frequency and increasing temperature. The variation of conductivity as a function of temperature and frequency reveals non-adiabatic hopping of charge carriers between impurities localized states. In addition, the experimental dielectric data have been analyzed by considering electric modulus formalism.  相似文献   

17.
In this paper, we present a detailed investigation of the electrical and dielectric properties of the Au/SnO2/n-Si (MIS) structures. The capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics have been measured in the frequency range of 1 kHz-1 MHz at room temperature. Calculation of the dielectric constant (?′), dielectric loss (?″), loss tangent (tan δ), ac electrical conductivity (σac), ac resistivity (ρac) and the electric modulus are given in the studied frequency ranges. Experimental results show that the values of dielectric parameters are a strong function of frequency. The decrease of ?′ and ?″ with increasing frequency were observed. In addition the increase of σac with increasing frequency is founded. Also, electric modulus formalism has been analyzed to obtain the experimental dielectric data. The interfacial polarization can be more easily occurred at the lower frequency and/or with the number of interface state density between SnO2/Si interface, consequently, contribute to the improvement of dielectric properties of MIS structure.  相似文献   

18.
Different from conventional metal-Si compounds-n-Si structures, the thin film of TiW alloy was deposited on Pd2Si-n-Si to form a diffusion barrier between aluminum (Al) and Pd2Si-n-Si. Dielectric properties and electrical conductivity of TiW-Pd2Si/n-Si structures in the frequency range of 5 kHz-10 MHz and voltage range of (−4 V) to (10 V) have been investigated in detail by using experimental C-V and G-V measurements. Experimental results indicate that the values of ε′ show a steep decrease with increasing frequency for each voltage. On the other hand, the values of ε″ show a peak, and its intensity increases with decreasing voltage and shifts towards the lower frequency side. The ac electrical conductivity (σac) and the real part of electric modulus (M′) increase with increasing frequency. Also, the imaginary part of electric modulus (M″) shows a peak and the peak position shifts to higher frequency with increasing applied voltage. It can be concluded that the interfacial polarization can be more easily occurred at low frequencies, and the majority of interface states at metal semiconductor interface, consequently contributes to deviation of dielectric properties of TiW-Pd2Si/n-Si structures.  相似文献   

19.
The frequency (f) and bias voltage (V) dependence of electrical and dielectric properties of Au/SiO2/n-GaAs structures have been investigated in the frequency range of 10 kHz–3 MHz at room temperature by considering the presence of series resistance (Rs). The values of Rs, dielectric constant (ε′), dielectric loss (ε″) and dielectric loss tangent (tan δ) of these structures were obtained from capacitance–voltage (C–V) and conductance–voltage (G/ω–V) measurements and these parameters were found to be strong functions of frequency and bias voltage. In the forward bias region, C–V plots show a negative capacitance (NC) behavior, hence ε′–V plots for each frequency value take negative values as well. Such negative values of C correspond to the maximum of the conductance (G/ω). The crosssection of the C–V plots appears as an abnormality when compared to the conventional behavior of ideal Schottky barrier diode (SBD), metal–insulator–semiconductor (MIS) and metal–oxide–semiconductor (MOS) structures. Such behavior of C and ε′ has been explained with the minority-carrier injection and relaxation theory. Experimental results show that the dielectric properties of these structures are quite sensitive to frequency and applied bias voltage especially at low frequencies because of continuous density distribution of interface states and their relaxation time.  相似文献   

20.
In this work, we present the results of dielectric relaxation and defect generation kinetics towards reliability assessments for Zr-based high-k gate dielectrics on p-Ge (1 0 0). Zirconium tetratert butoxide (ZTB) was used as an organometallic source for the deposition of ultra thin (∼14 nm) ZrO2 films on p-Ge (1 0 0) substrates. It is observed that the presence of an ultra thin lossy GeOx interfacial layer between the deposited high-k film and the substrate, results in frequency dependent capacitance-voltage (C-V) characteristics and a high interface state density (∼1012 cm−2 eV−1). Use of nitrogen engineering to convert the lossy GeOx interfacial layer to its oxynitride is found to improve the electrical properties. Magnetic resonance studies have been performed to study the chemical nature of electrically active defects responsible for trapping and reliability concerns in high-k/Ge systems. The effect of transient response and dielectric relaxation in nitridation processes has been investigated under high voltage pulse stressing. The stress-induced trap charge density and its spatial distribution are reported. Charge trapping/detrapping of stacked layers under dynamic current stresses was studied under different fluences (−10 mA cm−2 to −50 mA cm−2). Charge trapping characteristics of MIS structures (Al/ZrO2/GeOx/Ge and Al/ZrO2/GeOxNy/Ge) have been investigated by applying pulsed unipolar (peak value - 10 V) stress having 50% duty-cycle square voltage wave (1 Hz-10 kHz) to the gate electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号