首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
n-Type Si(100) wafers with a thermally grown Si3N4 layer (∼170 nm) were sequentially implanted with 160 keV He ions at a dose of 5 × 1016 cm−2 and 110 keV H ions at a dose of 1 × 1016 cm−2. Depending on the annealing temperature, surface exfoliations of two layers were observed by optical microscopy and atomic force microscopy. The first layer exfoliation was found to correspond to the top Si3N4 layer, which was produced at lower annealing temperatures. The other was ascribed to the implanted Si layer, which was formed at higher temperatures. The possible exfoliation processes are tentatively discussed, and potential applications of such phenomena are also suggested.  相似文献   

2.
The plasmochemical etching of SiO2 in CF4 + O2 plasma is considered. During the experiment SiO2 films are etched in CF4 + O2 plasma at temperatures of 300 and 350 K. The dependences of plasmochemical etching rates of SiO2 on O2 content in the feed are measured. The experimental measurements are compared with theoretical calculations. The obtained theoretical results are used to predict the real dimensions of etched trenches. It is found that decrease in temperature reduces lateral undercutting due to decreased desorption of formed SiF4 molecules from the sidewalls.  相似文献   

3.
Dry plasma etching of sub-micron structures in a SiO2/Si/SiO2 layer system using Cr as a mask was performed in a fluorocarbon plasma. It was determined that the best anisotropy could be achieved in the most electropositive plasma. A gas composition yielding the desired SOI planar photonic crystal structures was optimized from the available process gases, Ar, He, O2, SF6, CF4, c-C4F8, CHF3, using DC bias data sets. Application of the c-C4F8/(noble gas) chemistry allowed fabrication of the desired SOI planar photonic crystal. The average etching rates for the pores and ridge waveguide regions were about 71 and 97 nm/min, respectively, while the average SiO2/Si/SiO2 to Cr etching selectivity for the ridge waveguide region was about 33:1 in case of the c-C4F8/90%Ar plasma with optimized parameters.  相似文献   

4.
The reactive ion etching (RIE) of SiO2 in CF4 + H2 plasma is considered. The influence of activated polymer on the RIE rate of SiO2 in CF4 + H2 plasma is determined by extrapolation of experimentally measured kinetics of the etching rate. It is found that the increased surface coverage by CF2 radicals suppresses the RIE rate of SiO2 in CF4 + H2 plasma during the initial stages of the etching process. The formation of activated polymer becomes pronounced when adsorbed CF2 radicals are slowly activated. The activated polymer intensifies the etching reaction and enhances the etching rate. At the same time, the activated polymer intensifies the polymerization reactions. The increased surface coverage by the polymer suppresses the RIE rate of SiO2 in CF4 + H2 plasma at later stages of the etching process.  相似文献   

5.
The role of N2 on GaAs etching at 150 mTorr capacitively-coupled Cl2/N2 plasma is reported. A catalytic effect of N2 was found at 20-25% N2 composition in the Cl2/N2 discharges. The peak intensities of the Cl2/N2 plasma were monitored with optical emission spectroscopy (OES). Both atomic Cl (725.66 nm) and atomic N (367.05 nm) were detected during the Cl2/N2 plasma etching. With the etch rate and OES results, we developed a simple model in order to explain the etch mechanism of GaAs in the high pressure capacitively-coupled Cl2/N2 plasma as a function of N2 ratio. If the plasma chemistry condition became positive ion-deficient at low % N2 or reactive chlorine-deficient at high % N2 in the Cl2/N2 plasma, the GaAs etch rate is reduced. However, if the plasma had a more balanced ratio of Cl2/N2 (i.e. 20-25% N2) in the plasma, much higher etch rates (up to 150 nm/min) than that in pure Cl2 (50 nm/min) were produced due to synergetic effect of neutral chlorine adsorption and reaction, and positive ion bombardment. Pure Cl2 etching produced 14 nm of RMS surface roughness of GaAs. Introduction of ?20% N2 gas in Cl2/N2 discharges significantly reduced the surface roughness to 2-4 nm. SEM photos showed that the morphology of photoresist mask was strongly degraded. Etch rate of GaAs slightly increased from 10 to 40 nm/min when RIE chuck power changed from 10 to 150 W at 12 sccm Cl2/8 sccm N2 plasma condition. The surface roughness of GaAs etched at 12 sccm Cl2/8 sccm N2 plasma was 2-3 nm.  相似文献   

6.
The process window for the infinite etch selectivity of silicon nitride (Si3N4) layers to ArF photoresist (PR) and ArF PR deformation were investigated in a CH2F2/H2/Ar dual-frequency superimposed capacitive coupled plasma (DFS-CCP) by varying the process parameters, such as the low frequency power (PLF), CH2F2 flow rate, and H2 flow rate. It was found that infinitely high etch selectivities of the Si3N4 layers to the the ArF PR on both the blanket and patterned wafers could be obtained for certain gas flow conditions. The H2 and CH2F2 flow rates were found to play a critical role in determining the process window for infinite Si3N4/ArF PR etch selectivity, due to the change in the degree of polymerization. The preferential chemical reaction of hydrogen with the carbon in the hydrofluorocarbon (CHxFy) layer and the nitrogen on the Si3N4 surface, leading to the formation of HCN etch by-products, results in a thinner steady-state hydrofluorocarbon layer and, in turn, in continuous Si3N4 etching, due to enhanced SiF4 formation, while the hydrofluorocarbon layer is deposited on the ArF photoresist surface.  相似文献   

7.
Etching of Ge2Sb2Te5 (GST) is a critical step in the fabrication of chalcogenide random access memories. In this paper, the etch characteristics of GST films were studied with a CF4/Ar gas mixture using a reactive-ion etching system. We observed a monotonic decrease in etch rate with decreasing CF4 concentration indicating its importance in defining the material removal rate. Argon, on the other hand, plays an important role in defining the smoothness of the etched surface and sidewall edge acuity. We have studied the importance of gas mixture and RF power on the quality of the etched film. The smoothest surfaces and most vertical sidewalls were achieved using a CF4/Ar gas mixture ratio of 10/40, a background pressure of 80 mTorr, and power of 200 W.  相似文献   

8.
The etching mechanism of ZrO2 thin films in BCl3/Ar plasma was investigated using a combination of experimental and modeling methods. It was found that an increase in the Ar mixing ratio causes the non-monotonic behavior of the ZrO2 etch rate which reaches a maximum of 41.4 nm/min at about 30-35% Ar. Langmuir probe measurements and plasma modeling indicated the noticeable influence of a BCl3/Ar mixture composition on plasma parameters and active species kinetics that results in non-linear changes of both densities and fluxes for Cl, BCl2 and . From the model-based analysis of surface kinetics, it was shown that the non-monotonic behavior of the ZrO2 etch rate can be associated with the concurrence of chemical and physical pathways in ion-assisted chemical reaction.  相似文献   

9.
Oxidation characteristics of Si0.85Ge0.15 nanowires were investigated using transmission electron microscopy (TEM) analyses. Si0.85Ge0.15 nanowires were grown in a tube furnace by vapor–liquid–solid (VLS) method and thermally oxidized at 925 °C for 1–8 h. After oxidation, oxide thicknesses were measured using TEM images. Si0.85Ge0.15 nanowires showed a thicker oxide than Si nanowires, for the whole range of oxidation time. The oxidation rate of Si0.85Ge0.15 nanowires significantly decreased in nanowires with diameters less than 150 nm. Long-term oxidation in Si0.85Ge0.15 nanowire resulted in the oxidation of germanium atoms.  相似文献   

10.
An etching process with high selectivity for SiN relative to SiO2 at a low temperature is required for an etching process in LSI process. We achieved SiN film etching with high selectivity using an organic solvent (ethylene glycol dimethyl ether) containing anhydrous hydrogen fluoride. Selectivity as high as 15 was obtained at 80 °C. It was found that anhydrous HF effectively induces high selectivity for SiN relative to SiO2. SiN film etching with high selectivity performed at low temperature for a single wafer process can be readily applied to future node technology devices.  相似文献   

11.
The sintering process of semiconducting Y-doped BaTiO3 ceramics added with BaB2O4 as low temperature sintering aid were investigated. When the low temperature sintering aid BaB2O4 added Y-doped BaTiO3 ceramics prepared by Sol-Gel method, the sintering temperature of BaTiO3-based ceramics would be greatly decreased, and also widen sintering range. Y-doped BaTiO3 ceramics with BaB2O4 addition can be obtained at 1050 °C. Ceramics samples with room temperature resistivity 60-80 Ω cm, ratio of the maximum resistivity to minimum resistance (Rmax/Rmin) 104 and temperature coefficient of resistivity (α) 10%/°C were obtained.  相似文献   

12.
Experimental results are presented demonstrating that by using rapid thermal nitridation (RTN) of rugged poly-Si surface prior to Si 3N4 deposition, the quality and reliability of reoxidized Si3N4 dielectric (ON dielectric with an effective oxide thickness of about 35 Å) can be significantly improved over ON films on rugged poly-Si without RTN treatment. These improvements include significantly reduced defect-related dielectric breakdown, 103 × increase in TDDB lifetime, lower leakage current, and suppressed electron-hole trapping and capacitance loss during stress  相似文献   

13.
To find the possibility of using a low-temperature process in growing carbon nanotubes (CNTs), nickel catalyst converted from film into particles by microwave H2/N2 plasma and the following CNT growth are all kept at a low temperature of 250 °C. The flat panel display industry requests low-temperature rather than the traditional high-temperature process for CNT growth. It was found that H2/N2 proportion is very sensitive to nickel morphology and the subsequent CNT growth. Better nickel and CNTs morphology are obtained for the proportion H2/N2=3/1 than those for the generally used pure hydrogen environment. The process pressure selection during pretreatment can determine whether CNTs are grown or not. The diameter of growing CNTs is proportional to nickel particle size. Field emission results support field amplification coefficient claim. The long tube length and high tube density of growing CNTs demonstrate low threshold electric field. This work shows the potential to use H2/N2 instead of pure hydrogen plasma in growing qualified CNTs applied in display industry.  相似文献   

14.
To avoid plasma induced erosion of chamber hardware, the application of remote plasma sources to activate the etch gases was introduced. We present results on the etch behaviour of titanium nitride (TiN) using mixtures of NF3, Cl2 and argon. The gas mixture was excited in a remote plasma source and then routed through a reaction chamber to study the etch behaviour of TiN samples which simulate the situation at the chamber walls. The dependency of the TiN etch rate on temperature, gas flow, composition and pressure was examined. While the temperature (studied in the range 25-300 °C) turned out to be the most sensitive parameter, the general etch rate was mainly dependent on the availability of atomic fluorine. Etch products and NF3/Cl2 dissociation have been monitored by quadrupole mass spectrometry and infrared spectroscopy. While NF3 showed a high decomposition up to 96%, chlorine decomposition was not observed. However the addition of chlorine increased the etch rates up to 260% in the low pressure/low temperature regime. Surface effects of chlorine addition are indicated by X-Ray Photoelectron Spectrometry and REM surface analysis.  相似文献   

15.
This article reports the technological fabrication and the electrical characterisation of SiO2/Si3N4 ion sensitive field effect transistors (ISFET) for the detection of H+, K+ and Na+ ions. ISFET chemical sensors show quasi-nernstian pH response with sensitivities around 54 mV/pH. pK and pNa measurements are also investigated, evidencing sensitivities lower than 20 mV/pH and non-nernstian pH-dependent phenomena for the highest K+ or Na+ concentrations (pK and pNa, respectively, lower than 4 and 3). It is shown that the detection properties of H+, K+ and Na+ ions are dependent on each other, being responsible for saturation effects for the highest concentrations. It is finally concluded that SiO2/Si3N4 ISFETs are well adapted for the pH measurement, can be used for the pK or pNa measurements in the case of buffered solutions but are not fully suitable for multi-ion detection in the case of medical analysis.  相似文献   

16.
Tl3InSe4 single crystal has been successfully prepared by the Bridgman crystal growth technique. The crystal that is reported for the first time is found to be of tetragonal structure with lattice parameters of a=0.8035 and c=0.6883 nm. The electrical resistivity and Hall effect measurements on the crystal revealed a conductivity type conversion from p- to n-type at a critical temperature of 283 K. The electron to hole mobility ratio is found to be 1.10. The analysis of the temperature-dependent electrical resistivity, Hall coefficient and carrier concentration data reveals the extrinsic type of conduction with donor impurity levels that behave as acceptor levels when are empty. The data analysis allowed the calculation of the hole and the electron effective masses as 0.654m0 and 0.119m0, respectively. In addition, the temperature-dependent Hall mobility in the n-region is found to be limited by the electron–phonon short-range interactions scattering with an electron–phonon coupling constant of 0.21.  相似文献   

17.
MNOS, MNS and MOS devices have been fabricated on p-type 6H–SiC substrates without epitaxial layers. They have been characterised using high frequency CV, GV, and IV measurements. The high frequency CV characteristics of p-type 6H–SiC MNOS structures indicate a very similar interface quality to p-type 6H–SiC MOS devices. A lower effective fixed insulator charge QI is found in MNOS devices with a higher oxide thickness xox. An xox of 10 nm is effective in avoiding charge instability. The effective fixed insulator charge QI can be modified in the 10 nm oxide SiC MNOS devices by injecting carriers into the nitride. Similar leakage current characteristics compared to p-type 6H–SiC MNS structures have been found for p-type 6H–SiC MNOS devices, but the SiO2/Si3N4 insulator current is lower, particularly for positive electric fields. At the oxide breakdown limit (−10 MV/cm), Poole–Frenkel conduction is observed in the nitride for negative electric fields due to direct tunnelling of holes into the nitride.  相似文献   

18.
Inductively coupled plasma (ICP) system has been widely used for anisotropic silicon etching because it offers high aspect ratio with a vertical side wall. The isotropic etching capability of the ICP system, however, has not gained much attention, even though it possesses advantages in profile control and high etching rate over wet isotropic etching or conventional RIE (reactive ion etching). We report here an isotropic dry etching process to release microcantilever beams. Investigations have covered chamber pressure, plasma source power, substrate power, SF6 (sulfur hexafluoride) flow rate relating to Si etching rate, undercutting rate, and isotropic ratio. The SiO2 (silicon dioxide) cantilevers were successfully released from the Si substrate and the optimized silicon etching rate was 9.1 μm per minute. The etching profiles were analyzed by scanning electron micrographs (SEM).  相似文献   

19.
We present a novel study of the interaction of SF6-based plasmas with sol-gel materials in a parallel plate reactive ion etching (RIE) system. The purpose of these experiments was to obtain quantitative measures and optimisation of the RIE parameters, which can be used in the microfabrication of planar lightwave circuit (PLC) devices. The sulfur hexafluoride chemistry is chosen due to its excellent etching properties of SiO2, which is one of the components of the photopatternable sol-gel materials and is not present in typical photoresist materials. Fast process etching rate and good selectivity is achieved by varying SF6 flow and power delivered to the electrodes. The study also reveals a marginal influence of oxygen and argon flow on the character of the sol-gel etching. The experimental data obtained can be used as a reference for any sol-gel devices fabricated using widely available RIE reactors.  相似文献   

20.
The programming characteristics of memories with different tunneling-layer structures (Si3N4, SiO2 and Si3N4/SiO2 stack) dielectrics are investigated using 2-D device simulator of MEDICI. It is theoretically confirmed that the memory with the SiO2/Si3N4 stacked tunneling layer exhibits better programming characteristics than ones with single tunneling layer of SiO2 or Si3N4 for programming by channel hot electron (CHE) injection. A 10-μs programming time with a threshold-voltage shift of 5 V can be obtained for the memory with SiO2/Si3N4 stacked tunneling layer at Vcg = 10 V and Vds = 3.3 V. This is attributed to the fact that the floating-gate voltage is close to drain voltage for the stacked tunneling dielectric (TD), and thus the CHE injection current is the largest. Furthermore, optimal substrate concentration is determined to be 5 × 1016–2 × 1017 cm−3, by considering a trade-off between the programming characteristics and power dissipation/lifetime of the devices. Lastly, the effects of interface states on the programming characteristics are investigated. Low interface-state density gives short programming time and small post-programming control-gate current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号