首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the boundary integral equation approaches are used to study the doubly periodic array of cracks/rigid-line inclusions in an infinite isotropic plane medium. For the doubly periodic rigid-line inclusion problems, the special integral equation containing the axial and shear forces within the rigid-line inclusion is used. The doubly periodic crack problems are dealt with using the displacement discontinuous integral equation approach. Stress intensity factors, effective elastic properties for doubly periodic array of cracks/rigid-line inclusions are calculated and compared with the available numerical solutions.  相似文献   

2.
A plane electroelastic problem involving planar cracks in a piezoelectric body is considered. The deformation of the body is assumed to be independent of time and one of the Cartesian coordinates. The cracks are traction free and are electrically either permeable or impermeable. Numerical Green's functions which satisfy the boundary conditions on the cracks are derived using the hypersingular integral approach and applied to obtain a boundary integral solution for the electroelastic crack problem considered here. As the conditions on the cracks are built into the Green's functions, the boundary integral solution does not contain integrals over the cracks. It is used to derive a boundary element procedure for computing the crack tip stress and electrical displacement intensity factors.  相似文献   

3.
 An integral equation approach is presented to investigate the interaction between cracks and rigid-line inclusions embedded in an infinite isotropic elastic matrix subject to remote loading. The relevant fundamental solutions in the integral formulation are presented. Special tip elements are used to simulate the variation of the discontinuous displacements over the crack surfaces, and the axial and shear forces along the rigid-line inclusions. The stress intensity factors at the crack tips and at the ends of the rigid-line inclusions are computed and compared with available solutions. Received: 6 August 2002 / Accepted: 3 February 2003 The work described in this paper was partially supported by a grant from the Research Grant Council of the Hong Kong Special Administration Region, China (Project No.: HKU 7011/01E). The authors would like to thank two reviewers for their constructive comments and suggestions to the paper. The comments of Professor H.P. Hong at the Department of Civil and Environmental Engineering of the University of Western Ontario of Canada are also appreciated.  相似文献   

4.
Analytical solutions are obtained to quantify the influence of cracks on electroelastic properties of piezoelectric materials containing doubly-periodic arrays of cracks. Both the rectangular and diamond-shaped arrays of cracks are considered. Solutions are obtained for the case of an antiplane shear load coupled with an in-plane electrical load. This study makes it possible to understand the multicrack interactions in piezoelectric solids and their effects on the fracture and electroelastic properties. The crack tip field intensity factors and the change in stored electroelastic energy due to the presence of many microcracks are calculated. These calculations enable the prediction of the effective elastic, piezoelectric and dielectric constants of a damaged piezoelectric material. The results of this work can be useful in developing a technique to determine the state of mechanical and electrical damage in piezoelectric materials.  相似文献   

5.
A two-dimensional boundary element method for the analysis of a magnetoelectroelastic medium containing doubly periodic sets of cracks or thin inclusions is developed in this paper. The integral equations and closed-form expressions for corresponding kernels are obtained. Based on the quasi-periodicity of extended displacement and stress function, the integral representations for average stress, strain, electric displacement, magnetic induction etc. are developed. The algorithm of effective properties determination is given. The numerical examples prove the efficiency and high accuracy of the proposed approach in determination of stress, electric displacement and magnetic induction intensity factors and effective properties of the material containing doubly periodic arrays of cracks or thin inclusions.  相似文献   

6.
A piezoelectric strip with permeable edge cracks normal to the strip boundaries is analyzed. Under uniform antiplane mechanical shear and inplane electric loading, the distribution of the entire electroelastic field in a cracked piezoelectric strip is determined in explicit analytic form via the conformal mapping technique. It is found that the strain and the electric displacement exhibit the same singularity as the stress near the crack tips, while the electric field is always uniform. The field intensity factors and the energy release rate are independent of the applied electric load for prescribed stress, and related to the applied electric load for prescribed strain.  相似文献   

7.
A priezoelectric strip with permeable edge cracks normal to the strip boundaries is analyzed. Under uniform antiplane mechanical shear and inplane electric loading, the distribution of the entire electroelastic field in a cracked piezoelectric strip is determined in explicit analytic form via the conformal mapping technique. It is found that the strain and the electric displacement exhibit the same singularity as the stress near the crack tips, while the electric field is always uniform. The field intensity factors and the energy release rate are independent of the applied electric load for prescribed stress, and related to the applied electric load for prescribed strain.  相似文献   

8.
1-3 Piezocomposites are made by embedding piezoelectric fibers/rods in polymer matrix materials. Fiber–matrix interface fracture can affect the performance of piezocomposites. In this paper, axisymmetric interfacial cracks in piezocomposites are studied by considering an idealized model of a single piezoelectric fiber in a matrix material. The displacement discontinuity method is used to formulate the Mode I and II crack problems. The fundamental solutions required for DDM are derived explicitly by using the electroelastic field equations and Fourier integral transforms. The dependence of Mode I and II stress intensity factors of single and multiple interface cracks on fiber and matrix material properties, crack length and distance between cracks are investigated.  相似文献   

9.
Periodic collinear edge hole cracks and arbitrary small cracks emanating from collinear holes, which are two typical multiple site damages occurred in the aircraft structures, are studied by using the weigh function method. An explicit closed form weight function for periodic edge hole cracks in an infinite sheet is obtained and further used to calculate the stress intensity factor and crack opening displacement for various loading cases. Compared to finite element method, the present weight function is accurate and highly efficient. The interactions of the holes and cracks on the stress intensity factor and crack opening displacement are quantitatively determined by using the present weight function. An approximate weight function method is also proposed for arbitrary small cracks emanating from multiple collinear holes. This method is very useful for calculating the stress intensity factor for arbitrary small cracks.  相似文献   

10.
The integral equation formulations of an infinite homogeneous isotropic medium containing various inclusions, cracks and rigid lines are presented. The present integral equation formulations contain the displacements (no tractions) over the inclusion-matrix interfaces, the discontinuous displacements over crack surfaces and the axial and the shear forces along rigid-line inclusions. Besides, the sub-domain boundary element method is also used in the present research. Numerical results from the present method and the sub-domain boundary element method are compared and discussed.  相似文献   

11.
Summary This paper studies the interactions between N randomly-distributed cylindrical inclusions in a piezoelectric matrix. The inclusions are assumed to be perfectly bounded to the matrix, which is subjected to an anti-plane shear stress and an in-plane electric field at infinity. Based on the complex variable method, the complex potentials in the matrix and inside the inclusions are first obtained in form of power series, and then approximate solutions for electroelastic fields are derived. Numerical examples are presented to discuss the influences of the inclusion array, inclusion size and inclusion properties on couple fields in the matrix and inclusions. Solutions for the case of an infinite piezoelectric matrix with N circular holes or an infinite elastic matrix containing N circular piezoelectric fibers can also be obtained as special cases of the present work. It is shown that the electroelastic field distribution in a piezoelectric material with multiple inclusions is significantly different from that in the case of a single inclusion.  相似文献   

12.
Summary This paper presents a study on the effective electroelastic property of piezoelectric media with parallel or randomly distributed cracks. The theoretical formulation is derived using the dilute model of distributed cracks and the solution of a single dielectric crack problem, in which the electric boundary condition along the crack surfaces is governed by the crack opening displacement. It is observed that the effective electroelastic property of such cracked piezoelectric media is nonlinear and sensitive to loading conditions. Numerical simulations are conducted to show the effects of crack distribution and electric boundary condition upon the effective electroelastic property. The transition between the commonly used electrically permeable and impermeable crack models is studied.  相似文献   

13.
Based on the complex variable method, this paper addresses the plane problems of multiple piezoelectric inclusions in a non-piezoelectric matrix. The inclusions are assumed to be perfectly bounded to the matrix, which is loaded by in-plane mechanical loads while the inclusions are applied by anti-plane electric loads at infinity. The general solutions are first derived for the complex potentials both in the matrix and inside the inclusions, and then numerical results are presented to show the effects of applied electric field, inclusion arrays and material properties on the electroelastic fields around the inclusions. It is shown that the inclusion arrays have a significant influence on the stress distribution at the interface between the matrix and piezoelectric inclusions.  相似文献   

14.
The electro-elastic problem for a periodic array of cracks in a piezoelectric medium subjected to coupled electro-mechanical loads is investigated. The mixed boundary value problem, which is formulated directly in terms of the crack surface displacements and electrical potentials, results in a system of hyper-singular integral equations in which the unknown functions are the crack surface displacement and electric potential. Numerical results include the crack surface displacement and the stress and electric intensity factors for the entire range of possible periodic crack spacing and medium size. The central contribution of this paper is the development of an analytical model that predicts crack-spacing effect. The resulting model is validated by a 2D finite element analysis.  相似文献   

15.
 In this paper, an integral equation method to the inclusion-crack interaction problem in three-dimensional elastic medium is presented. The method is implemented following the idea that displacement integral equation is used at the source points situated in the inclusions, whereas stress integral equation is applied to source points along crack surfaces. The displacement and stress integral equations only contain unknowns in displacement (in inclusions) and displacement discontinuity (along cracks). The hypersingular integrals appearing in stress integral equation are analytically transferred to line integrals (for plane cracks) which are at most weakly singular. Finite elements are adopted to discretize the inclusions into isoparametric quadratic 10-node tetrahedral or 20-node hexahedral elements and the crack surfaces are decomposed into discontinuous quadratic quadrilateral elements. Special crack tip elements are used to simulate the variation of displacements near the crack front. The stress intensity factors along the crack front are calculated. Numerical results are compared with other available methods. Received: 28 January 2002 / Accepted: 4 June 2002 The work described in this paper was partially supported by a grant from the Research Grant Council of the Hong Kong Special Administration Region, China (Project No.: HKU 7101/99 E).  相似文献   

16.
Interactions of interfacial arc cracks   总被引:3,自引:0,他引:3  
The interaction of two interfacial arc cracks around a circular elastic inclusion embedded in an elastic matrix is examined. New results for stress intensity factors for a pair of interacting cracks are derived for a concentrated force acting in the matrix. For verifying the point load solutions, stress intensity factors under uniform loading are obtained by superposing point force results. For achieving this objective, a general method for generating desired stress fields inside a test region using point loads is described. The energetics of two interacting interfacial arc cracks is discussed in order to shed more light on the debonding of hard or soft inclusions from the matrix. The analysis based on complex variables is developed in a general way to handle the interactions of multiple interfacial arc cracks/straight cracks.  相似文献   

17.
In this paper, the dynamic interaction between multiple inclusions and cracks is studied by the time-domain boundary element method (TDBEM). To deal with this problem, two kinds of time-domain boundary integral equations together with the sub-region technique are applied. The cracked solid is divided into homogeneous and isotropic sub-regions bounded by the interfaces between the inclusions and the matrix. The non-hypersingular traction boundary integral equations are applied on the crack-surfaces; while the traditional displacement boundary integral equations are used on the interfaces and the exterior boundaries. In the numerical solution procedure, square-root shape functions are adopted for the crack-opening-displacements to describe the proper asymptotic behavior in the vicinity of the crack-tips. Numerical results for dynamic stress intensity factors are presented for various cases. The effects of the inclusion position, material combinations and multiple micro-cracks on the dynamic stress intensity factors are discussed.  相似文献   

18.
Sei Ueda  Toru Iogawa 《Acta Mechanica》2010,210(1-2):57-70
In this paper, the mixed-mode fracture problem of a functionally graded piezoelectric material strip with two penny-shaped or annular cracks is considered. It is assumed that the electroelastic properties of the strip vary continuously along the thickness of the strip, and that the strip is under electric loading. The problem is formulated in terms of a system of singular integral equations, which are solved numerically. Numerical calculations are carried out, and the stress and electric displacement intensity factors are presented for various values of dimensionless parameters representing the crack size, the crack location, and the material nonhomogeneity.  相似文献   

19.
A time-domain boundary element method (BEM) together with the sub-domain technique is applied to study transient response of interfacial cracks in piecewise homogeneous, anisotropic and linear piezoelectric bi-materials under electrical and mechanical impacts. The present time-domain BEM uses a quadrature formula for the temporal discretization to approximate the convolution integrals and a collocation method for the spatial discretization. Quadratic quarter-point elements are implemented at the tips of the interface cracks. To determine the real or complex dynamic stress intensity factors and the dynamic electrical displacement intensity factor of the interfacial cracks, an explicit extrapolating formula in a typical state of the crack plane perpendicular to the poling direction is presented in this paper. Numerical examples are presented; and the effects of the load combination and material combination on dynamic intensity factors and dynamic energy release rate are discussed.  相似文献   

20.
利用复变函数知识、半逆解法及待定系数法, 研究了压电复合材料的共线周期性裂纹问题, 给出了在电不可渗透边界条件下的应力、电位移、应力强度因子、电位移强度因子和机械应变能释放率的解析解。当裂纹间距趋于无穷时, 共线周期性裂纹退化为一条单裂纹, 得到了压电复合材料一条单裂纹的结果。通过数值算例讨论了共线周期性裂纹的裂纹长度、裂纹间距和机电载荷对机械应变能释放率的影响规律。结果表明, 机械应变能释放率随着共线周期性裂纹的裂纹长度、共线周期性裂纹的裂纹间距、机械载荷和正电场的增大而增大, 随着负电场的增大而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号