共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
锂离子电池用双草酸硼酸锂的固相合成 总被引:1,自引:0,他引:1
详细介绍了固相法合成的一种新型电解质锂盐--双草酸硼酸锂(LiBOB)。制备过程采用草酸、氢氧化锂、硼酸为原料,其物质的量比为2.1∶[KG-*2]1∶[KG-*2]1,经球磨混合后高温烧制,烧制温度为120 ℃、脱水温度为240 ℃,所得产品经乙酸乙酯提纯后即得产物。产物通过分析测定可知,其杂质含量少且晶体结构完整;并通过热分析证实其热稳定性优于六氟磷酸锂。用其制备的电解液组装的电池,循环性能较好,所制双草酸硼酸锂达到用作电池电解质锂盐的标准。 相似文献
4.
5.
6.
二氟草酸硼酸锂(LiDFOB)作为一种新盐,具有独特的化学结构,在锂离子电池中表现出诸多优异的电化学性能,未来有望取代传统电解质六氟磷酸锂(LiPF6)。本文对市面上已存在的LiDFOB制备路线进行汇总与改进,根据可能的反应机理进行分析,通过探索与正交实验方法,探索一条在实验室完全可以重复的合成路线。通过傅里叶变换红外光谱、X射线衍射进行检测其化学结构,用X射线光电子能谱与化学滴定法定量检测产品纯度,对LiDFOB的制备、提纯与表征进行研究。该方法简易、使用常用玻璃仪器、重复性高,将工业合成方法进行合理简化和创新,本实验为本科生及早参与科研,了解科研最前沿研究内容有重要的推动意义。 相似文献
7.
8.
9.
文章综述了近年来锂离子电池豹新型锂盐一双乙二酸硼酸锂(LiBOB)研究的成果。介绍了双乙二酸硼酸锂的合成方法、组成与结构、化学和电化学性能及其与结构的关系。并重点综述了LiBOB电解液的导电性研究,对负极材料、正极材料的稳定性研究,与其他锂盐在锂离子电池中混合使用的性能研究等。总结了LiBOB的优缺点,指出了其进一步的研究方向。 相似文献
10.
锂离子电池(Lithium ion battery)以高能量密度、开路电压大、循环寿命长以及环境友好等优点,而广泛应用在通讯基站、航空航天、新能源交通工具等领域。电解质锂盐作为锂离子电池不可或缺的部分,不但能在电解液中提供和传输锂离子,而且能够在电极材料表面形成保护层,在很大程度上决定着锂离子电池的容量、循环性能、安全性能、工作温度、能量密度和功率密度等性能。本文主要介绍了电解质锂盐的理化性质和作用,重点总结了目前常见的几种无机锂盐和有机锂盐的研究进展,对不同锂盐的优缺点进行了评述,并对电解质锂盐在锂离子电池领域的发展进行了展望。 相似文献
11.
介绍了锂电子电池的主要材料组成,以及锂电子电池电解液的主要成分,总结了重要电解质材料六氟磷酸锂的制备工艺及其改进技术。 相似文献
12.
13.
采用Li Ni1/3Co1/3Mn1/3O2作为正极材料,石墨为负极材料,制成18650型/1300 m A·h功率型圆柱电池;该类电池5 C放电容量相当于1 C放电容量的99%,5 C循环测试900次后,容量剩余87%以上;经过针刺后,电池没有起火爆炸。 相似文献
14.
15.
新型锂离子电池材料研究进展 总被引:5,自引:0,他引:5
介绍了锂离子电池正极材料钴酸锂、锰酸锂、磷酸铁锂及镍钴锰复合材料的性能及特点,以及负极材料,电解液等方面各种材料的行业发展情况。途述了锂离子正极材料磷酸铁锂和电解质材料六氟磷酸锂的合成方法,及各种合成方法的特点。对锂离子电池行业进行了展望。 相似文献
16.
17.
动力锂离子电池在使用过程中往往存在容量衰减过快、寿命较短的问题,这主要是由电池单体之间的不一致性造成的。选择性能尽可能一致的电池用来成组,对锂离子电池在动力电池中的推广应用具有重要意义。本文分析了锂离子电池不一致性的表现及成因,从生产、配组、使用等方面总结了提高锂离子电池一致性的方法,并对现有的配组方案进行了综述。 相似文献
18.
采用直流磁控溅射法成功制备了钾离子电池用Si薄膜负极材料.通过SEM、恒电流充放电对薄膜材料的形貌及电化学性能进行了表征.结果表明,样品表面颗粒呈球状,表面较粗糙.电化学性能测试表明,Si电极存在较大的初期不可逆容量损失,其首次库仑效率为53%,首次嵌钾容量为1300 mAh/g,10次循环后,嵌锂容量维持在530 mAh/g,容量保持率为41%. 相似文献
19.
聚合物锂离子电池的研究进展 总被引:3,自引:0,他引:3
介绍了聚合物电解质的开发过程、分类、导电机理和研究方法以及聚合物电解质存在的问题.综述分析了提高导电聚合物电解质离子电导率的途径,并讨论了今后聚合物电解质的发展方向. 相似文献
20.
以Li3PO4和Fe(3PO4).28H2O为原料,采用固相法成功制备了锂离子电池正极材料LiFePO4,并讨论了Li3PO4用量对材料的影响。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电测试等手段对最终产物的物相、形貌和电化学性能进行了表征。结果表明,按计量比制备的LiFePO4样品具有较好的电化学性能,以0.1、0.5、1和5 C(1C=150 mA/g)的倍率进行充放电,首次放电比容量分别为135.6、123.8、116.2和56.5 mAh/g。磷酸锂过量8%制备的样品具有较好的高倍率性能,5C时放电比容量为80.3 mAh/g;而磷酸锂过量30%的样品则具有很好的小倍率放电比容量,0.1C时放电比容量为151.1 mAh/g。 相似文献