首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yttria stabilized zirconia (YSZ) is a candidate material focused as optical and insulating materials in nuclear reactors. Therefore, it is useful to investigate defect formation during irradiation, in order to assess YSZ resistance to radiation damage. In the present study, in situ transmission electron microscopy (TEM) observations were performed on YSZ during 30 keV Ne+ ion irradiation in the temperature range of 723–1123 K (using 100 K intervals). Results revealed that damage evolution morphology depends on irradiation temperature. For irradiations below 1023 K, defect clusters and bubbles were formed simultaneously. On the other hand, at 1123 K, only bubbles were formed in the initial stage of irradiation. Loops formed later following the bubble formation. It was also observed that, in the early stage of irradiation above 923 K, larger bubbles were formed along the loop planes compared with other areas.

TEM observations indicated that dislocation loops formed on three kinds of crystallographic planes: namely, {1 0 0}, {1 1 1} and {1 1 2} planes.  相似文献   


2.
Single crystals of z- and x-cut LiNbO3 were irradiated at room temperature and 15 K using He+- and Ar+-ions with energies of 40 and 350 keV and ion fluences between 5 × 1012 and 5 × 1016 cm−2. The damage formation investigated with Rutherford backscattering spectrometry (RBS) channeling analysis depends on the irradiation temperature as well as the ion species. For instance, He+-irradiation of z-cut material at 300 K provokes complete amorphization at 2.0 dpa (displacements per target atom). In contrast, 0.4 dpa is sufficient to amorphize the LiNbO3 in the case of Ar+-irradiation. Irradiation at 15 K reduces the number of displacements per atom necessary for amorphization. To study the etching behavior, 400 nm thick amorphous layers were generated via multiple irradiation with He+- and Ar+-ions of different energies and fluences. Etching was performed in a 3.6% hydrofluoric (HF) solution at 40 °C. Although the etching rate of the perfect crystal is negligible, that of the amorphized regions amounts to 80 nm min−1. The influence of the ion species, the fluence, the irradiation temperature and subsequent thermal treatment on damage and etching of LiNbO3 are discussed.  相似文献   

3.
Two prethinned spinel specimens containing either Y0.15Zr0.85O2 or Ce0.5Zr0.5O2 particles were implanted with 200–400 keV Xe ions at 873 K using the IVEM-Tandem Facility at Argonne National Laboratory. In situ transmission electron microscopy (TEM) was conducted during the implantation in order to follow the evolution of the microstructure. At an ion fluence between 2.4x1020 to 3x1020 m−2 (up to 50 dpa and 4.7 at %), large Xe bubbles of 50–100 nm developed at the boundaries of the small oxide particles, while a high density of dislocation loops (up to 8 nm in diameter) and much smaller bubbles (up to 4 nm in diameter) formed in the spinel matrix. No large bubbles were observed at the boundaries between the spinel grains. These results suggest that the boundaries between spinel and oxide particles are preferred sites for fission gas accumulation.  相似文献   

4.
Helium irradiation experiments of V–4Ti alloy were conducted in an ECR ion irradiation apparatus by using helium ions with energy of 5 keV. The ion fluence was in the range from 1 × 1017 He/cm2 to 8 × 1017 He/cm2. After the helium ion irradiation, the helium retention was examined by using a technique of thermal desorption spectroscopy (TDS). After the irradiation, the blisters with a size of about 0.1 μm were observed at the surface, and the blister density increased with the ion fluence. Two desorption peaks were observed at approximately 500 and 1200 K in the thermal desorption spectrum. When the ion fluence was low, the retained helium desorbed mainly at the higher temperature regime. As increase of the ion fluence, the desorption at the lower temperature peak increased and the retained amount of helium saturated. The saturated amount was approximately 2.5 × 1017 He/cm2. This value was comparable with those of the other plasma facing materials such as graphite.  相似文献   

5.
Silica glass was implanted with negative 60 keV Cu ions at an ion flux from 5 to 75 μA/cm2 up to a fluence of 1 × 1017 ions/cm2 at initial sample temperatures of 300, 573 and 773 K. Spectra of ion-induced photon emission (IIPE) were collected in situ in the range from 250 to 850 nm. Optical absorption spectra of implanted specimens were ex situ measured in the range from 190 to 2500 nm.

IIPE spectra showed a broad band centered around 560 nm (2.2 eV) that was assigned to Cu+ solutes. The band appeared at the onset of irradiation, increased in intensity up to a fluence of about 5 × 1015 ions/cm2 and then gradually decreased indicating three stage of the ion beam synthesis of nanoclusters: accumulation of implants, nucleation and growth nanoclusters. The IIPE intensity normalized on the ion flux is independent on the ion flux below 20 μA/cm2at higher fluences. The intensity of the band increased with increasing samples temperature, when optical absorption spectra reveal the increase of Cu nanoparticles size.  相似文献   


6.
7.
Au+ ion implantation with fluences from 1 × 1014 to 3 × 1016 cm−2 into 12CaO · 7Al2O3 (C12A7) single crystals was carried out at a sample temperature of 600 °C. The implanted sample with the fluence of 1 × 1015 cm−2 exhibited photoluminescence (PL) bands peaking at 3.1 and 2.3 eV at 150 K when excited by He–Cd laser (325 nm). This was the first observation of PL from C12A7. These two PL bands are possibly due to intra-ionic transitions of an Au ion having the electronic configuration of 6s2, judged from their similarities to those reported on Au ions in alkali halides. However, when the concentration of the implanted Au ions exceeded the theoretical maximum value of anions encaged in C12A7 (2.3 × 1021 cm−3), surface plasmon absorption appeared in the optical absorption spectrum, suggesting Au colloids were formed at such high fluences. These observations indicate that negative gold ions are formed in the cages of C12A7 by the Au+ implantation if an appropriate fluence is chosen.  相似文献   

8.
Polycrystalline pellets of the rare-earth sesquioxide Dy2O3 with cubic C-type rare-earth structure were irradiated with 300 keV Kr2+ ions at fluences up to 5 × 1020 Kr/m2 at cryogenic temperature. Irradiation-induced microstructural evolution is characterized using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). In previous work, we found a phase transformation from a cubic, C-type to a monoclinic, B-type (C2/m) rare-earth structure in Dy2O3 during Kr2+ ion irradiation at a fluence of less than 1 × 1020 Kr/m2. In this study, we find that the crystal structure of the top and middle regions of the implanted layer transform to a hexagonal, H-type (P63/mmc) rare-earth structure when the irradiation fluence is increased to 5 × 1020 Kr/m2; the bottom of the implanted layer, on the other hand, remains in a monoclinic phase. The irradiation dose dependence of the C-to-B-to-H phase transformation observed in Dy2O3 appears to be closely related to the temperature and pressure dependence of the phases observed in the phase diagram. These transformations are also accompanied by a decrease in molecular volume (or density increase) of approximately 9% and 8%, respectively, which is an unusual radiation damage behavior.  相似文献   

9.
Xe+ ion implantation with 200 keV was completed at room temperature up to a fluence of 1 × 1017 ion/cm2 in yttria-stabilized zirconia (YSZ) single crystals. Optical absorption and X-ray photoelectron spectroscopy (XPS) were used to characterize the changes of optical properties and charge state in the as-implanted and annealed crystals. A broad absorption band centered at 522 or 497 nm was observed in the optical absorption spectra of samples implanted with fluences of 1 × 1016 ion/cm2 and 1 × 1017 ion/cm2, respectively. These two absorption bands both disappeared due to recombination of color centers after annealing at 250 °C. XPS measurements showed two Gaussian components of O1s spectrum assigned to Zr–O and Y–O, respectively, in YSZ single crystals. After ion implantation, these two peaks merged into a single peak with the increasing etching depth. However, this single peak split into two Gaussian components again after annealing at 250 °C. The concentration of Xe decreased drastically after annealing at 900 °C. And the XPS measurement barely detected the Xe. There was no change in the photoluminescence of YSZ single crystals with a fluence of 1 × 1017 ion/cm2 after annealing up to 900 °C.  相似文献   

10.
Microstructure change and atomic disordering in MgO · nAl2O3 (n = 1.1) irradiated with 350 MeV Au ions (Se = 35 keV/nm) were investigated through transmission electron microscopy (TEM) and high angular resolution electron channeling X-ray spectroscopy (HARECXS) techniques. High resolution TEM revealed that each ion track maintains crystalline structure. The core region of ion track is found to reveal a lattice fringe with a half period of spinel matrix, suggesting the phase transformation from spinel to rock-salt structure. HARECXS analysis clearly showed progress of cation disorder at a significantly large region of 10 nm in diameter. These results are compared with the previous results of 200 MeV Xe ion irradiated spinel (Se = 25 keV/nm). The structure of ion tracks is found to consist of three concentric circle structures: the defective core region (2 nm in diameter), strained region (5 nm) and cation disordered region (10–12 nm).  相似文献   

11.
The charge-exchange neutral particles fluxes and energy distribution in IBW heated plasma were investigated in the HT-7 tokamak. The RF frequency was 30 MHz and with an injecting power up to 200 kW. It is observed that the plasma performance is obviously enhanced by IBW heating. The electron temperature was increased by 0.5 keV and the central line averaged electron density was doubled. The neutral particle fluxes of high-energy increased and the bulk ions were heated during IBW heating. The ion temperature was increased by 0.3 keV and the ion heating efficiency of (2–3) eV kW−1 × 1013 cm−3 was achieved. The velocity distribution of charge-exchanged neutral particles appears to be Maxwellian without high-energy tail ions up to the maximum RF power.  相似文献   

12.
The damage distributions induced by ultra low energy ion implantation (5 keV Si+) in both strained-Si/Si0.8Ge0.2 and normal Si are measured using high-resolution RBS/channeling with a depth resolution better than 1 nm. Ion implantation was performed at room temperature over the fluence range from 2 × 1013 to 1 × 1015 ions/cm2. Our HRBS results show that the radiation damage induced in the strained Si is slightly larger than that in the normal Si at fluences from 1 × 1014 to 4 × 1014 ions/cm2 while the amorphous width is almost the same in both strained and normal Si.  相似文献   

13.
The radiation stability of spinel MgAl2O4 against the impact of beams of a fission product at fission energy (70 MeV iodine) and at different fluences was investigated using Transmission Electron Microscopy (TEM). Specimens prethinned before irradiation were analysed by TEM and irradiated bulk specimens were investigated using cross-sectional TEM. Tracks were observed in pre-thinned specimens. Partial amorphisation was observed for the irradiation at the highest fluence. Recrystalization of the amorphous region, induced by the microscope electron beam was observed. A threshold value of 6 keV nm−1 was determined for the amorphization of spinel under the above mentioned irradiation conditions. Moreover, profile measurements of the irradiated areas confirmed the large swelling values for this material when irradiated with fission products of fission energy. A thermal spike model was used to calculate the damage threshold for spinel using experimentally measured heavy-ion track radii, including results for other ions of up to very high energies. These accelerator-based fission product irradiations revealed an unexpected poor radiation stability, in contrast to the known good behaviour of the spinel against neutron or alpha particle damage.  相似文献   

14.
The enthalpy of γ-LiAlO2 was measured between 403 and 1673 K by isothermal drop calorimetry. The smoothed enthalpy curve between 298 and 1700 K results in H0(T) − H0(298 K)=−37 396 + 93.143 · T + 0.00557 · T2 + 2 725 221 · T−1 J/mol. The standard deviation is 2.2%. The heat capacity was derived by differentiation of the enthalpy curve. The value extrapolated to 298 K is Cp,298=(65.8 ± 2.0) J/K mol.  相似文献   

15.
In this paper we report on results of surface modification in several candidate materials for inert matrix fuel hosts (MgAl2O4, MgO and Al2O3) induced by (0.5–5) MeV/amu Kr, Xe and Bi ion bombardment in the fluence range of 2 × 1010–1012 ions/cm2. The size and shape of nanoscale hillock-like defects, each of which was created by the impact of a single ion, have been studied by using atomic force microscopy (AFM) technique. It was found that mean hillock height on sapphire and spinel surfaces depends linearly on the incident electronic stopping power. The hillocks are highest in MgAl2O4, having a lower threshold for the lattice disorder in the bulk material via relaxation of electronic excitations. As a possible reason for the hillocks formation, the plastic deformation due to the defects created by the Coulomb explosion mechanism in the target subsurface layer is suggested.  相似文献   

16.
Actinide oxides have been used as nuclear fuels in the majority of power reactors working in the world and actinide nitrides are under investigation for the fuels of the future fast neutron fission reactors developed in Forum Generation IV. Radiation damage in actinide oxides UO2, (U0.92Ce0.08)O2, and actinide nitride UN has been characterized after irradiation with swift heavy ions. Fluences up to 3 × 1013 ions/cm2 of heavy ions (Kr 740 Mev, Cd 1 GeV) available at the CIRIL/GANIL facility were used to simulate irradiation in reactors by fission products and by neutrons. The macroscopic effects of irradiation remains very weak compared with those seen in other ceramic oxides irradiated in the same conditions: practically no swelling can be measured and no change in colour can be observed on the irradiated part of a polished face of sintered disks. The point defects in irradiated actinide compounds have been characterized by optical absorption spectroscopy in the UV–Vis–NIR wavelength range. The absorption spectra before and after irradiation are compared, and unexpected stability of optical properties during irradiation is shown. This result confirms the low rate of formation of point defects in actinide oxides and actinide nitrides under irradiation. Actinide oxides and nitrides studied are >40% ionic, and oxidation state of the actinides seems to be stable during irradiation. The small amount of point defects produced by radiation (<1016 cm−2) has been identified from differences between the absorption spectrum before irradiation and the one after irradiation: point defects in oxygen or nitrogen lattices can be observed respectively in oxides and nitrides (F centres), and small amounts of U5+ would be present in all compounds.  相似文献   

17.
We have performed high-dose Fe ion implantation into Si and characterized ion-beam-induced microstructures as well as annealing-induced ones using transmission electron microscopy (TEM) and grazing-incidence X-ray diffraction (GIXRD). Single crystals of Si(1 0 0) substrate were irradiated at 623 K with 120 keV Fe+ ions to a fluence of 4 × 1017 cm−2. The irradiated samples were then annealed in a vacuum furnace at temperatures ranging from 773 K to 1073 K. Cross-sectional TEM observations and GIXRD measurements revealed that a layered structure is formed in the as-implanted specimen with ε-FeSi, β-FeSi2 and damaged Si, as component layers. A continuous β-FeSi2 layer was formed on the topmost layer of the Si substrate after thermal annealing.  相似文献   

18.
Epitaxial, buried silicon carbide (SiC) layers have been fabricated in (100) and (111) silicon by ion beam synthesis (IBS). In order to study the ion beam induced epitaxial crystallization (IBIEC) of buried SiC layers, the resulting Si/SiC/Si layer systems were amorphized using 2 MeV Si2+ ion irradiation at 300 K. An unexpected high critical dose for the amorphization of the buried layers is observed. Buried, amorphous SiC layers were irradiated with 800 keV Si+ ions at 320 and 600°C, respectively, in order to achieve ion beam induced epitaxial crystallisation. It is demonstrated that IBIEC works well on buried layers and results in epitaxial recrystallization at considerably lower target temperatures than necessary for thermal annealing. The IBIEC process starts from both SiC/Si interfaces and may be accompanied by heterogenous nucleation of poly-SiC as well as interfacial layer-by-layer amorphization, depending on irradiation conditions. The structure of the recrystallized regions in dependence of dose, dose rate, temperature and crystal orientation is presented by means of TEM investigations.  相似文献   

19.
It is now well known that irradiation of metals and alloys can drive materials into complex configurations. Several examples, like the occurrence of order–disorder phase transitions driven by irradiation, are discussed by many authors. To understand the behavior of ceramics under irradiation, several spinels were irradiated. In this paper, experimental results on the irradiation of ZnAl2O4 by low-energy particles (4 MeV Au2+ ions) are presented. An order–disorder phase transition is observed. The unusual behavior of this spinel under irradiation is discussed within the framework of Martin’s theory of driven alloys under irradiation.  相似文献   

20.
A rate-theory model of radiation-induced amorphization and crystallization of U3Si during ion irradiation has been generalized to include U3Si2 and UO2. The generalized model has been applied to ion-irradiation and in-reactor experiments on U3Si and U3Si2 and provides an interpretation for the amorphization curve (dose required to amorphize the material as a function of temperature), for the ion-radiation-induced nanoscale polycrystallization of these materials at temperatures above the critical temperature for amorphization, as well as for the role of the small crystallites in retarding amorphization. An alternative mechanism for the evolution of recrystallization nuclei is described for a model of irradiation-induced recrystallization of UO2 wherein the stored energy in the UO2 is concentrated in a network of sinklike nuclei that diminish with dose due to interaction with radiation-produced defects. The sinklike nuclei are identified as cellular dislocation structures that evolve relatively early in the irradiation period. The complicated kinetics involved in the formation of a cellular dislocation network are approximated by the formation and growth of subgrains due to the interaction of shock waves produced by fission-induced damage to the UO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号