首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An optical fibre point dosemeter based on the gated detection of the luminescence from a Cu(1+)-doped fused quartz detector effectively eliminated errors due to Cerenkov radiation and native fibre fluorescence. The gated optical fibre dosemeter overcomes serious problems faced by scintillation and optically stimulated luminescence approaches to optical fibre point dosimetry. The dosemeter was tested using an external beam radiotherapy machine that provided pulses of 6 MV X rays. Gated detection was used to discriminate the signal collected during the radiation pulses, which included contributions from Cerenkov radiation and native fibre fluorescence, from the signal collected between the radiation pulses, which contained only the long-lived luminescence from the Cu(1+)-doped fused quartz detector. Gated detection of the luminescence provided accurate, real-time dose measurements that were linear with absorbed dose, independent of dose rate and that were accurate for all field sizes studied.  相似文献   

2.
Nonlinear optical properties of Co(2+)-doped magnesium aluminosilicate glass ceramics prepared under normal and reducing conditions are studied in the range of the 4A2 --> 4T1(4F) transition of tetrahedral Co2+ ions. The results of passive Q switching of a 1.54-microm Er3+:glass laser with saturable absorbers made of Co(2+)-doped glass ceramics prepared at different conditions are presented. Q-switched pulses of 60 ns in duration and of 4.6 mJ in energy, corresponding to approximately 20% of the Q-switching conversion efficiency, are achieved.  相似文献   

3.
Passively Q-switched Tm(3+)-doped silica fiber lasers   总被引:1,自引:0,他引:1  
Jackson SD 《Applied optics》2007,46(16):3311-3317
By splicing on a length of Ho(3+)-doped silica fiber onto a diode-pumped double-clad Tm(3+)-doped silica fiber, stable passive Q switching of the Tm(3+)-doped silica fiber laser is demonstrated. The formation of Q-switched pulses was found to depend on both the length and the position of the Ho(3+)-doped silica fiber that was inserted into the fiber laser cavity. For stable Q-switched pulse generation, Ho(3+)-doped silica fiber lengths shorter than twice the absorption depth must be used. For long Ho(3+)-doped silica fiber lengths, randomly generated pulses are observed at operating wavelengths longer than 2090 nm, which are attributed to intracavity pumping of the Ho(3+)-doped silica fiber.  相似文献   

4.
Zong C  Ai K  Zhang G  Li H  Lu L 《Analytical chemistry》2011,83(8):3126-3132
An effective dual-emission fluorescent silica nanoparticle-based probe has been constructed for rapid and ultrasensitive detection of Cu(2+). In this nanoprobe, a dye-doped silica core served as a reference signal, thus providing a built-in correction for environmental effects. A response dye was covalently grafted on the surface of the silica nanoparticles through a chelating reagent for Cu(2+). The fluorescence of the response dye could be selectively quenched in the presence of Cu(2+), accompanied by a visual orange-to-green color switch of the nanoprobe. The nanoprobe provided an effective platform for reliable detection of Cu(2+) with a detection limit as low as 10 nM, which is nearly 2 × 10(3) times lower than the maximum level (~20 μM) of Cu(2+) in drinking water permitted by the U.S. Environmental Protection Agency (EPA). The high sensitivity was attributed to the strong chelation of Cu(2+) with polyethyleneimine (PEI) and a signal amplification effect. The nanoprobe constructed by this method was very stable, enabling the rapid detection of Cu(2+) in real water samples. Good linear correlations were obtained over the concentration range from 1 × 10(-7) to 8 × 10(-7) (R(2) = 0.99) with recoveries of 103.8-99.14% and 95.5-95.14% for industrial wastewater and lake water, respectively. Additionally, the long-wavelength emission of the response dye can avoid the interference of the autofluorescence of the biosystems, which facilitated their applications in monitoring Cu(2+) in cells. Furthermore, the nanoprobe showed a good reversibility; the fluorescence can be switched "off" and "on" by an addition of Cu(2+) and EDTA, respectively.  相似文献   

5.
The hydration of tricalcium silicate (C(3)S) in the presence of heavy metal is very important to cement-based solidification/stabilisation (s/s) of waste. In this work, tricalcium silicate pastes and aqueous suspensions doped with nitrate salts of Zn(2+), Pb(2+), Cu(2+) and Cr(3+) were examined at different ages by X-ray powder diffraction (XRD), thermal analysis (DTA/TG) and (29)Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). It was found that heavy metal doping accelerated C(3)S hydration, even though Zn(2+) doping exhibited a severe retardation effect at an early period of time of C(3)S hydration. Heavy metals retarded the precipitation of portlandite due to the reduction of pH resulted from the hydrolysis of heavy metal ions during C(3)S hydration. The contents of portlandite in the control, Cr(3+)-doped, Cu(2+)-doped, Pb(2+)-doped and Zn(2+)-doped C(3)S pastes aged 28 days were 16.7, 5.5, 5.5, 5.5, and <0.7%, respectively. Heavy metals co-precipitated with calcium as double hydroxides such as (Ca(2)Cr(OH)(7).3H(2)O, Ca(2)(OH)(4)4Cu(OH)(2).2H(2)O and CaZn(2)(OH)(6).2H(2)O). These compounds were identified as crystalline phases in heavy metal doping C(3)S suspensions and amorphous phases in heavy metal doping C(3)S pastes. (29)Si NMR data confirmed that heavy metals promoted the polymerisation of C-S-H gel in 1-year-old of C(3)S pastes. The average numbers of Si in C-S-H gel for the Zn(2+)-doped, Cu(2+)-doped, Cr(3+)-doped, control, and Pb(2+)-doped C(3)S pastes were 5.86, 5.11, 3.66, 3.62, and 3.52. And the corresponding Ca/Si ratios were 1.36, 1.41, 1.56, 1.57 and 1.56, respectively. This study also revealed that the presence of heavy metal facilitated the formation of calcium carbonate during C(3)S hydration process in the presence of carbon dioxide.  相似文献   

6.
Measurements of the intensity of emission and induced optical absorption at 400–750 nm in KU-1 quartz fibers were performed under pulsed irradiation in a BARS-6 reactor (pulse duration, 80 μs; dose per pulse, up to 5×1012 neutrons/cm2 (E>0.2 MeV); dose rate, up to 105 Gy/s). The nondelayed emission component is due to the Cerenkov radiation, the weak relaxation component has a relaxation time of ∼150±50 μs, and the radiation-induced optical absorption reaches a value of 2.5×10−4 cm−1 (relaxation time, 600–1200 μs). A nonlinear dependence of the Cerenkov radiation on the dose rate and the presence of the relaxation emission component and the transient optical absorption may be associated with an optical inhomogeneity of glass induced by the high-power reactor irradiation.  相似文献   

7.
Although the radioluminescence (RL) signal from optical fibre Al(2)O(3):C dosemeters used in medical applications is essentially proportional to dose rate, the crystals used so far are imperfect in the sense that their RL sensitivity changes with accumulated dose. A computational algorithm has been developed that corrects for these sensitivity changes. We further report on a new system that effectively separates the RL signal generated in the crystal from fluorescence and Cerenkov emission generated in the optical fibre cable using a gating technique in connection with pulsed linear accelerator radiation beams. The dosimetry system has been used for dose measurements in a phantom during an intensity-modulated radiation therapy (IMRT) treatment with 6 MV photons. The RL measurement results are in excellent agreement (i.e. within 1%) with both the OSL results and the dose delivered according to the treatment planning system. RL signals from Al(2)O(3):C can be used for real-time dose rate measurements with a time resolution of approximately 0.1 s and a spatial resolution only limited by the size of the detector (<0.5 mm).  相似文献   

8.
The femtosecond laser induced micro- and nanostructures for the application to the three-dimensional optical data storage are investigated. We have observed the increase of refractive index due to local densification and atomic defect generation, and demonstrated the real time observation of photothermal effect after the femtosecond laser irradiation inside a glass by the transient lens (TrL) method. The TrL signal showed a damped oscillation with about an 800 ps period. The essential feature of the oscillation can be reproduced by the pressure wave creation and propagation to the outward direction from the irradiated region. The simulation based on elastodynamics has shown that a large thermoelastic stress is relaxed by the generation of the pressure wave. In the case of soda-lime glass, the velocity of the pressure wave is almost same as the longitudinal sound velocity at room temperature (5.8 microm/ns). We have also observed the localized photo-reduction of Sm3+ to Sm2+ inside a transparent and colorless Sm(3+)-doped borate glass. Photoluminescence spectra showed that some the Sm3+ ions in the focal spot within the glass sample were reduced to Sm2+ ions after femtosecond laser irradiation. A photo-reduction bit of 200 nm in three-dimensions can be recorded with a femtosecond laser and readout clearly by detecting the fluorescence excited by Ar+ laser (lambda = 488 nm). A photo-reduction bit can be also erased by photo-oxidation with a cw Ar+ laser (lambda = 514.5 nm). Since photo-reduction bits can be spaced 150 nm apart in a layer within glass, a memory capacity of as high as 1 Tbit can be achieved in a glass piece with dimensions of 10 mm x 10 mm x 1 mm. We have also demonstrated the first observation of the polarization-dependent periodic nanostructure formation by the interference between femtosecond laser light and electron acoustic waves. The observed nanostructures are the smallest embedded structures ever created by light. The period of self-organized nanostructures can be controlled from approximately 140 to 320 nm by the pulse energy and the number of irradiated pulses. Furthermore, we have also observed the self-assembled sub-wavelength periodic structures created in silica glass by femtosecond pulses on the plane of the propagation of light.  相似文献   

9.
This paper analyses the influence of the Cerenkov radiation and other noise sources, the so-called stem effect, on radioluminescence (RL) signals generated in optical fibre Al2O3:C dosemeters used in medical dosimetry. The optical fibre dosemeter consists of a sensitive Al2O3:C crystal coupled to an optical fibre cable that carries the RL and optically stimulated luminescence (OSL) signals generated in the Al2O3:C crystal. During irradiation of the dosemeter, the real-time dose rate can be determined from the RL signal and after irradiation the total dose absorbed is determined from the OSL signal stimulated using a focused green solid-state laser. In particular, the components of the stem effect generated in the fibres were analysed to determine their impact on the RL signal.  相似文献   

10.
Zhang L  Dong S 《Analytical chemistry》2006,78(14):5119-5123
A novel electrogenerated chemiluminescence (ECL) sensor based on Ru(bpy)3(2+)-doped silica (RuDS) nanoparticles conjugated with a biopolymer chitosan membrane was developed. These uniform RuDS nanoparticles (approximately 40 nm) were prepared by a water-in-oil microemulsion method and were characterized by electrochemical and transmission electron microscopy technology. The Ru(bpy)3(2+)-doped interior maintained its high ECL efficiency, while the exterior nanosilica prevented the luminophor from leaching out into the aqueous solution due to the electrostatic interaction. This is the first attempt to branch out the application of RuDS nanoparticles into the field of ECL, and since a large amount of Ru(bpy)3(2+) was immobilized three-dimensionally on the electrode, the Ru(bpy)3(2+) ECL signal could be enhanced greatly, which finally resulted in the increased sensitivity. This sensor shows a detection limit of 2.8 nM for tripropylamine, which is 3 orders of magnitude lower than that observed at a Nafion-based ECL sensor. Furthermore, the present ECL sensor displays outstanding long-term stability.  相似文献   

11.
An extension of dosemeter issue period brings significant economic and logistic benefits. Therefore, it is desirable to have an extended period as long as possible without significant loss of the quality of dose measurements. There are many studies devoted to the investigation of fading or reduction of the dose accumulated in dosemeters with time. However, this is one of many critical factors that need's to be taken into account when extending the dosemeter issue period. Background radiation is also a critical factor that needs to be appropriately accounted. In this report, a new approach has been suggested for evaluating the effect of background radiation on the lower limit of detection (LLD) of occupational radiation dose. This approach is based on the data collected from control dosemeters that are routinely used for subtraction of background radiation from occupational dose measurements. The results show that for LiF:Mg,Cu,P thermoluminescence dosemeters, variations in background radiation have a higher impact on the LLD than dose fading and the absolute value of background radiation. Although there is no significant dose fading in LiF:Mg,Cu,P for a dosemeter issue period up to 1 y, variations in background radiation during this period of time can significantly increase photon LLDs (up to 700 microSv) for workers operating in an environment of variable radiation background.  相似文献   

12.
Qiu J  Kodama N  Yamaga M  Miura K  Mitsuyu T  Hirao K 《Applied optics》1999,38(35):7202-7205
We report on three-dimensional bright and long-lasting phosphorescence in a Ce(3+)-doped Ca(2)Al(2)SiO(7) crystal. After we scan with a focused 800-nm femtosecond pulsed laser, the path traversed by the focal point of the laser in the crystal emits bright and long-lasting phosphorescence that can be seen with the naked eye in the dark even 10 h after the removal of the activating laser. Absorption spectra of the crystal show that defect centers have formed after the laser irradiation, and the absorption that is due to the defect centers decays with time. It is suggested that a mechanism of the long-lasting phosphorescence consists of a thermostimulated recombination of holes and electrons at traps induced by the laser irradiation at room temperature.  相似文献   

13.
Dong Y  Wang R  Li G  Chen C  Chi Y  Chen G 《Analytical chemistry》2012,84(14):6220-6224
A novel sensing system has been designed for Cu(2+) ion detection based on the quenched fluorescence (FL) signal of branched poly(ethylenimine) (BPEI)-functionalized carbon quantum dots (CQDs). Cu(2+) ions can be captured by the amino groups of the BPEI-CQDs to form an absorbent complex at the surface of CQDs, resulting in a strong quenching of the CQDs' FL via an inner filter effect. Herein, we have demonstrated that this facile methodology can offer a rapid, reliable, and selective detection of Cu(2+) with a detection limit as low as 6 nM and a dynamic range from 10 to 1100 nM. Furthermore, the detection results for Cu(2+) ions in a river water sample obtained by this sensing system agreed well with that by inductively couple plasma mass spectrometry, suggesting the potential application of this sensing system.  相似文献   

14.
The Sn(4+)-doped TiO(2) nanocrystals with controlled crystalline phase and morphology had been successfully prepared through easily adjusting the solvent system from the peroxo-metal-complex precursor by solvothermal method. The Sn(4+)-doped TiO(2) nanocrystals were characterized by XRD, Raman, TEM, HRTEM, XPS, ICP-AES, BET, and UV-vis. The experimental results indicated that the Sn(4+)-doped TiO(2) nanocrystals prepared in the pure water or predominant water system trend to form rodlike rutile, whereas the cubic-shaped anatase Sn(4+)-doped TiO(2) nanocrystals can be obtained in the alcohol system. The growth mechanism and microstructure evolution of the Sn(4+)-doped TiO(2) nanocrystals prepared in the different solvent systems are discussed. The liquid-phase photocatalytic degradation of phenol was used as a model reaction to test the photocatalytic activity of the synthesized materials. It was found that sample Sn(4+)-doped TiO(2) prepared in 1-butanol showed the maximum photoactivity, which attributed to higher band gap, optimal crystalline phase and surface state modifications.  相似文献   

15.
Gated detection with intensified detectors, e.g., ICCDs, is today the accepted approach for detection of plasma emission in laser-induced breakdown spectroscopy (LIBS). However, these systems are more cost-intensive and less robust than nonintensified CCDs. The objective of this paper is to compare, both theoretically and experimentally, the performance of an intensified (ICCD) and nonintensified (CCD) detectors for detection of plasma emission in LIBS. The CCD is used in combination with a mechanical chopper, which blocks the early continuum radiation from the plasma. The detectors are attached sequentially to an echelle spectrometer under the same experimental conditions. The laser plasma is induced on a series of steel samples under atmospheric conditions. Our results indicate that there is no substantial difference in the performance of the CCD and ICCD. Signal-to-noise ratios and limits of detection achieved with the CCD for Si, Ni, Cr, Mo, Cu, and V in steel are comparable or even better than those obtained with the ICCD. This result is further confirmed by simulation of the plasma emission signal and the corresponding response of the detectors in the limit of quantum (photon) noise.  相似文献   

16.
Naftaly M  Shen S  Jha A 《Applied optics》2000,39(27):4979-4984
Tm(3+)-doped tellurite glass is investigated as a host for a broadband amplifier at 1.47 mum. The Tm(3+) fluorescence spectrum, lifetime, and cross section in tellurite glass are compared with those in fluorozirconate glasses. The advantages of a Tm(3+)-tellurite amplifier, especially when it is employed in combination with an Er(3+)-tellurite 1.55-mum amplifier, are discussed.  相似文献   

17.
Multi-color LLP phenomenon was observed in Mn2+-doped ZnO-B2O3-SiO2 glass-ceramics after the irradiation of a UV lamp at room temperature. Transparent ZnO-B2O3-SiO2 glass emitted reddish LLP while opaque glass-ceramics prepared by the glass sample after heat treatment emitted yellowish or greenish LLP. The change of the phosphorescence is due to the alteration of co-ordination state of Mn2+. The phosphorescence of the samples was seen in the dark with naked eyes even 12 h after the irradiation with a UV lamp (λmax=254 nm) for 30 min. Based on the approximative t−1 decay law of the phosphorescence, we suggest that the LLP is attributed to the thermally assisted electron-hole recombination.  相似文献   

18.
Zhou S  Jiang N  Dong H  Zeng H  Hao J  Qiu J 《Nanotechnology》2008,19(1):015702
Transparent Ni(2+)-doped Li(2)O-Ga(2)O(3)-SiO(2) glass ceramics (GCs) were prepared and characterized. By controlling the size of the nanocrystals, the infrared luminescence is tunable. It could be ascribed to alteration of the crystal field strength Dq of octahedral Ni(2+), which is due to the changes of the lattice parameters. The change in optical signals at telecommunication bands when the seed beam passes through the bulk sample with or without 980?nm excitation was also demonstrated for the first time. The coefficient of the change in optical signals at 1.3?μm is calculated as 0.26?cm(-1). The changes in optical signal have shown similar wavelength dependence on the luminescence property.  相似文献   

19.
975 nm脉冲激励下铋酸盐玻璃中铒离子荧光的动态响应   总被引:2,自引:2,他引:0  
用高温熔融退火法制备了组分为Bi_2O_3-B_2O_3-SiO_2掺铒铋酸盐玻璃,测试分析了铋酸盐玻璃中铒离子的光谱特性,着重研究了975nm脉冲泵浦光激励下1.5 μm波段荧光的动态响应.研究表明,对应脉冲泵浦光上下边沿,铒离子荧光存在着一个上升和下降响应过程,响应速率取决于4I13/2能级Er~(3+)离子荧光寿命.随着B_2O_3组分含量的提高,玻璃中OH基引起的能量传递导致Er~(3+)离子荧光寿命相应减小,荧光响应随之相应加快.  相似文献   

20.
The aqueous phase oxidation of gaseous elemental mercury (Hg(0)) by potassium persulfate (K(2)S(2)O(8), KPS) catalyzed by Ag(+) and Cu(2+) was investigated using a glass bubble column reactor. Concentrations of gaseous Hg(0) and aqueous Hg(2+) were measured by cold vapor generation atomic absorption spectrometry (CVAAS). The effects of several experimental parameters on the oxidation were studied; these include different types of catalysts, pHs and concentrations of potassium persulfate, temperatures, Hg(0) inlet concentrations and tertiary butanol (TBA). The results showed that the removal efficiency of Hg(0) increased with increasing concentration of potassium persulfate and catalysts Ag(+), Cu(2+) and Ag(+) provided better catalytic effect than Cu(2+). For example, in the presence of 5.0mmoll(-1) KPS, the mercury removal efficiency could reach 75.4 and 97.0% for an Ag(+) concentration of 0.1 and 0.3mmoll(-1), respectively, and 69.8 and 81.9% for 0.1 and 0.3mmoll(-1) Cu(2+). On the other hand, high temperature and the introduction of TBA negatively affect the oxidation. Furthermore, the removal efficiency of Hg(0) was much greater in neutral solution than in either acidic or alkaline solution. But the influence of pH was almost eliminated upon the addition of Ag(+) and Cu(2+), and high Hg(0) inlet concentration also has positive impact on the removal efficiency of Hg(0). The possible catalytic oxidation mechanism of gaseous mercury by KPS was also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号