首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 297 毫秒
1.
针对机载滑动聚束合成孔径雷达(SAR)高分辨率成像问题,在提出采用参考信号进行系统通道误差校正和高分辨滑动聚束成像运动补偿方法的基础上,结合基带方位向变标(BAS)算法,给出一种机载高分辨率滑动聚束SAR成像方法。首先,在频域推导了基于参考信号对回波信号进行幅度校正和相位补偿的方法;然后基于斜视成像几何模型,推导了机载滑动聚束SAR平台运动参数与多普勒参数之间的关系,给出从多普勒估计参数中估计运动参数和补偿运动误差的方法。采用该成像处理方法,某型星载SAR机载试飞试验成功实现了滑动聚束模式高分辨率成像,验证了方法的有效性。   相似文献   

2.
多通道技术可以用来提高系统的频带宽度,是实现分辨率优于0.1 m的超高分辨率机载合成孔径雷达(SAR)系统的一种有效的技术途径。该文针对实际雷达系统中采用的单通道宽带信号发射、8通道下变频接收来完成宽带信号收发的方案,提出一种对该收发系统的幅相误差进行测量和校正的方法,该方法采用空间闭环辐射提取宽带收发通道的幅相误差,采取具有频偏误差修正的矢量网络分析技术完成多通道接收单元中各子通道幅相误差的提取,将两者结合用于补偿整个系统误差对信号合成和成像处理所带来的影响。实际测试数据和外场飞行试验结果验证了该系统测量和校正方法的有效性和可行性。  相似文献   

3.
随着对地观测技术的发展,要求SAR系统能够同时实现高分辨率和宽测绘带,天基阵列多通道SAR结合数字波束形成(DBF)技术为解决该问题提供了很好的思路,但各个通道之间相位误差会很大程度上降低DBF的性能,常规通道误差补偿方法估计精度不足,应用场景受限。针对上述问题,该文提出一种基于方向图和多普勒相关系数的天基阵列SAR通道相位误差补偿方法,不仅利用天线方向图先验信息,还充分利用场景不同多普勒相关性信息,通过最小化天线方向图和多普勒的组合差异,实现对通道之间相位误差的估计。结合RADAR-SAT数据的仿真试验结果验证了该算法的有效性。  相似文献   

4.
方位向多通道合成孔径雷达(SAR)可实现高分辨率宽测绘带成像,准确估计通道间相位误差是保障成像质量的关键。该文提出了基于误差反向传播训练优化的通道相位误差估计方法,该方法根据多通道SAR回波生成的物理过程,构建含有通道间相位误差待估计参数的观测矩阵,通过初始化的通道误差和初始化的目标散射系数参数生成初始化的SAR回波,并计算该回波与多通道SAR实测回波之间的误差,通过深度学习中常用的误差反向传播的方法,不断训练优化上述参数,最终获得通道间相位误差的估计值,同时也得到了对稀疏目标散射系数的估计。该方法基于误差反向传播方法,并将该方法与通道误差的形成原理相结合,在稀疏假设下同时完成了相位估计和成像,为多通道SAR误差估计提供了一种全新的思路。多通道SAR仿真数据验证了该文算法的有效性。   相似文献   

5.
范怀涛  张志敏  李宁 《雷达学报》2018,7(3):346-354
作为实现高分辨率宽幅成像的重要技术手段之一,方位多通道合成孔径雷达(Synthetic Aperture Radar, SAR)近年来得到了广泛的研究与发展。在进行多通道数据重建之前,通道之间的传输特性必须校正一致,以避免图像中出现严重的虚假目标。在多通道SAR数据处理中,精确的基带多普勒中心估计对系统的通道失配校正和高分辨率成像具有非常重要的意义。但是单一通道数据的多普勒频谱混叠制约了传统基带多普勒中心估计算法在方位多通道SAR系统中的应用。基于特征分解处理,该文提出一种新的基带多普勒中心估计方法。该方法在推导过程中考虑了波束指向存在斜视的影响,能够实现方位多通道SAR系统基带多普勒中心和通道间相位误差的鲁棒估计。仿真实验和C波段方位向四通道机载SAR实验数据处理分析验证了算法的有效性。   相似文献   

6.
结合数字波束形成技术,星载方位多通道合成孔径雷达(SAR)系统可以克服最小天线面积限制,实现高分辨宽测绘带(High Resolution and Wide Swath, HRWS)SAR成像。结合多站SAR系统即可实现高分辨干涉合成孔径雷达(Interferometric SAR, InSAR)地形测绘。该文通过分析星载多站模式下各接收通道接收回波的信号模型,推导得到了其相对于参考接收通道接收回波的通用相位补偿公式,该公式同时补偿了由沿航向和垂直航向基线引起的相位误差,然后对基于最优Capon法的多相位中心解模糊成像的保相性进行了分析证明,由此得到了解模糊后每个方位时刻回波所对应的卫星轨道信息,为后续干涉处理及目标定位等奠定基础,最后利用地球椭球模型仿真的星载双通道多普勒模糊回波数据验证了该文方法的有效性。  相似文献   

7.
方位多通道SAR(Synthetic Aperture Radar)系统采用数字波束形成技术(Digital Beam-Forming, DBF),能够克服最小天线面积的限制,有效地解决了高分辨率与大测绘带之间的矛盾,实现了高分辨率宽测绘带对地观测,多发多收模式是方位多通道SAR未来的发展方向。对于方位多通道SAR系统,通道间的幅相误差对系统成像性能有很大影响,必须对其进行标定。利用子空间投影算法,提出了一种基于地面发射机和接收机的定标方法。其利用地面布设的发射机和接收机,分别估计出接收通道间的幅相误差和发射通道间的幅相误差,实现收发通道相位误差分离,从而估计出多发多收模式下各回波包含的幅相误差值。基于发射机和接收机估计方法的精度均得到了仿真验证。最后通过点目标仿真实验,对提出方法的有效性进行了仿真验证。实验表明,该方法通过布设地面发射机和接收机即可对多发多收模式下通道间的幅相误差进行标定,实现成像的校正。  相似文献   

8.
介绍了具备方位向大扫描角能力的高分辨率机载合成孔径雷达(SAR)系统,重点研究了综合电子设备技术,包括宽带信号产生、多子频带接收、宽带脉冲信号初相高稳定度技术等,并对不同子带的相位幅度特性以及脉冲压缩特性进行了分析。机载飞行试验及成像处理得到的高质量SAR图像,验证了宽带发射多子带接收的综合电子设备设计技术和技术性能。  相似文献   

9.
张磊  邓云凯  王宇  郑世超  杨亮 《雷达学报》2014,3(5):556-564
方位多通道技术是合成孔径雷达(SAR)实现高分宽测的手段之一。在多通道系统中通道失配是不可避免的,这会导致SAR 图像模糊。已有的通道失配校正方法大多依赖于系统参数以及场景内容。参数的不确定性将会大大降低校正算法的稳定性。该文提出了一种改进的通道失配校正方法,根据失配产生的原因,将通道失配分为距离增益误差、脉冲采样时钟误差和传输相位误差3 项。前两项误差通过交替估计进行补偿,而传输相位误差则通过代价函数给予估计。该方法对成像场景的依赖较小,基于机载多通道验证平台实测数据的实验验证了该方法的有效性。   相似文献   

10.
多通道接收技术在大测绘带、高分辨率SAR、GMTI、InSAR、多波段及多极化SAR中获得了广泛应用。在地面动目标检测时,由于多通道GMTI的最小可检测速度(MDV)要比单通道的MDV小,因此多通道GMTI是人们推崇的方案,但对多通道GMTI而言,必须解决多通道接收宽带信号系统的通道均衡问题,否则会降低系统的杂波抑制性能。针对这一问题,给出了一种适用于多通道接收GMTI系统通道校正的实现框图和基于FFT的校正方法,通过对三通道接收GMTI系统实测数据的处理,验证了该方法的有效性。  相似文献   

11.
多通道SAR误差估计与补偿方法及其实测数据验证   总被引:1,自引:1,他引:0  
多通道SAR系统能够突破最小天线面积条件的约束,同时获得宽测绘带、高分辨率的SAR图像。相对于单通道SAR系统,多通道系统中存在更多的误差源,这将大大降低SAR图像的质量。利用一组三通道SAR实测数据作为实验对象,根据各种误差源对SAR成像处理的影响,对系统中可能存在的各种误差源进行了分类并给出相应补偿方法。实测数据的处理结果验证了以上方法的有效性。  相似文献   

12.
为提高SAR系统的距离分辨率,采用多通道合成的方法来提高信号带宽是当前采用的主要技术手段之一。针对多通道之间相位失配的问题,该文提出一种基于回波数据的通道相位误差估计与补偿方法。首先,建立通道相位误差的多项式模型,对通道内高阶误差进行估计和补偿;然后,在多通道合成的过程中对通道间残留的低阶误差再次进行估计和补偿。以压缩脉冲聚焦效果最优为目标,建立通道相位误差的最优化估计模型。该方法针对多通道合成的实际情况对误差估计与补偿的过程进行分解,并且数据处理中只需抽取少量回波数据作为样本,因而具有效率高、收敛速度快的优点。通过对八通道实际数据的处理和分析,验证了该方法的有效性。  相似文献   

13.
龙腾  丁泽刚  肖枫  王岩  李喆 《雷达学报》2019,8(6):782-792
星载合成孔径雷达(SAR)是一种2维高分辨率微波成像雷达。它通过发射大带宽信号实现距离向高分辨,通过合成孔径技术实现方位向高分辨。随着人们对分辨率需求的不断提升,星载SAR正朝着分米级分辨率发展。一方面,受限于现有器件水平,可以通过频率步进技术实现大带宽信号发射,需要研究高精度子带拼接技术、子带间幅相误差对成像的影响与补偿技术;另一方面,受限于有限的波束宽度,可以使系统工作在聚束模式或滑聚模式实现长合成孔径,此时需研究轨道弯曲、“Stop-go”假设误差、电离层与对流层传输误差等非理想因素对成像的影响与补偿技术。因此,该文详细介绍了频率步进信号时序设计与子带拼接,研究星载高分辨率频率步进SAR成像算法与非理想因素补偿方法,最后给出成像算法的仿真验证和性能分析。   相似文献   

14.
该文较为详细地分析了高分辨率机载SAR数据处理中,有关目标距离单元徙动(RCM)校正和平台运动偏差的精确补偿问题。将平台运动偏差分解为空不变和空变分量,利用机载SAR系统传递函数以及SCFT算法,提出了目标RCM校正与平台MOCO合并处理的方法。仿真结果验证了方法的正确性。  相似文献   

15.
高分辨率机载SAR多子带合成误差补偿方法   总被引:1,自引:0,他引:1       下载免费PDF全文
合成孔径雷达(SAR)能够实现高分辨率成像,在遥感领域发挥着不可替代的作用,在军事和民用方面都有着广泛的应用。高分辨率SAR需要宽带收发系统,为了缓解大带宽对信号接收和采集设备的压力,对发射的宽带信号采用子带分割方法,在信号处理中通过对子带回波进行合成获得高分辨率图像。针对在子带合成时子带内和子带间误差会严重影响最终的图像质量,提出了一种基于实测数据的子带合成误差补偿方法。利用定标数据补偿子带内误差,利用回波数据补偿子带间误差,最终实现了多子带误差补偿,并利用机载SAR实测数据验证了方法的正确性和有效性。  相似文献   

16.
Synthetic bandwidth technique is used to increase frequency bandwidth of the system and provides an effective way to achieve the ultra high resolution in the field of Synthetic Aperture Radar (SAR). But in the actual SAR system, the synthesis result will be seriously deteriorated by the inner-channel and inter-channel phase error. A frequency domain synthetic bandwidth method based on transfer function extracting technique is proposed in an actual SAR system which consists of single wideband transmit channel and 8-way down-conversion receive sub-channels. The method can accurately get the amplitude and phase characteristics of the sub-channel and compensate the amplitude-phase errors. The final experimental results demonstrate the validity and feasibility of the method and the range resolution down to 0.1 m is obtained.  相似文献   

17.
邢涛  胡庆荣  李军  王冠勇 《信号处理》2015,31(8):962-967
斜视角的距离空变导致距离走动校正存在距离空变。文中分析了距离走动校正距离空变对成像的影响,发现距离走动校正空变导致目标图像在近距端和远距端向反方向漂移。在前斜视SAR中,距离场景近端目标向左漂移若干像素,距离场景远端目标向右漂移若干像素。距离走动校正空变不仅造成场景的扭曲,在高分辨大斜视下还会使图像散焦。文中给出了距离走动校正距离空变补偿方法,所提方法可与常规的二次补偿结合进行,不会增加额外的计算负担。仿真结果与理论分析一致,距离走动校正空变补偿后,场景近端和远端目标均能较好聚焦,实测数据成像实验也与理论分析相符。从而表明距离走动校正空变分析是正确的,距离走动校正空变补偿方法是有效的。   相似文献   

18.
由于其具有压缩采样特性,压缩感知在高分辨SAR成像技术中得到了广泛应用。然而作为一种参数化的成像方法,基于压缩感知的成像方法对位置误差非常敏感。位置误差会造成图像偏离真实位置、散焦、甚至根本不能成像。该文针对SAR压缩成像系统中存在的运动误差,分析了平台非理想运动对回波信号的调制机理和运动相位误差对信号稀疏表征的影响,提出了基于传感器测量数据进行运动补偿的压缩感知SAR成像方法,通过在稀疏矩阵中引入附加项完成空不变运动误差的补偿。该方法不仅能以少量的测量孔径和测量数据获得重建目标空间的足够信息而且能有效降低运动误差对成像质量的影响,实现高分辨成像。  相似文献   

19.
A real extended scene and moving targets multi-channel Synthetic Aperture Radar (SAR) raw signal simulator accounting for Inertial Navigation System (INS) errors and antenna patterns is presented in this paper. INS errors are obtained by solving INS error differential equations with Runge-Kutta method. A high resolution SAR image is used to estimate the complex reflectance of real extended scene. Extended scene and moving target are simulated separately and then are superposed in time domain. The simulated multi-channel SAR data can be used for development of multi-channel SAR Ground Moving Target Indication (SAR-GMTI) and also can be used for development of SAR motion compensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号