首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Abstract

A simulation model of ferroelectric capacitors which describes both hysteresis loops under arbitrary voltage profile and time dependence of polarization change is developed based on the parallel-element model. In the model, a ferroelectric capacitor is assumed to consist of parallel capacitor elements with different coercive voltage and switching polarization. A new method of pulse measurement is designed to obtain the switching behavior of individual element. The measurement on a sol-gel SrBi2Ta2O9 capacitor revealed that the switching time depended on the difference between the applied voltage and the coercive voltage of the capacitor element. The switching behavior is reproduced by inserting a nonlinear resistor in series with each capacitor in the model. All the parameters used in the model are determined from the measured data and no arbitrary fitting parameters are used.  相似文献   

2.
Abstract

We proposed a MFMIS structure having a floating gate as a bottom electrode between a ferroelectric thin film and the gate SiO2. Conventional gate SiO2 can be used and ferroelectric thin films can be grown on bottom electrodes which have a good matching with the ferroelectric materials due to adopt the MFMIS structure. Ir and IrO2 on poly-Si were used as floating gate. When a IrO2 layer was formed between PZT and poly-Si, a high-quality PZT thin film was obtained and the PZT films show no fatigue up to 1012 cycles of switching pulses. From the ID-VG characteristics measurement for 1·2 μm P-ch MFMIS FET, the shift in Vth or the memory window for a bias sweep of ±15V was about 3·3V. The difference of ID-VD curves which corresponded to ID-VG characteristics were found between before and after a programming pulse was applied.  相似文献   

3.
ABSTRACT

Experimental results on Bi2FeCrO6 (BFCO) epitaxial films deposited by laser ablation on SrTiO3 substrates are presented. It has been theoretically predicted using first-principles density functional theory that BFCO is ferrimagnetic (with a magnetic moment of 2μB per formula unit) and ferroelectric (with a polarization of ~ 80 μ C/cm2 at 0K). The crystal structure investigated using X-ray diffraction shows that the films are epitaxial with a high degree of crystallinity. Chemical analysis carried out by X-ray Microanalysis and X-ray Photoelectron Spectroscopy indicates the correct cationic stoichiometry in the BFCO layer, namely (Bi:Fe:Cr = 2:1:1). Cross-section high-resolution transmission electron microscopy images together with selected area electron diffraction confirm the crystalline quality of the epitaxial BFCO films with no identifiable foreign phase or inclusion. The multiferroic character of BFCO is proven by piezoresponse force microscopy (PFM) and magnetic measurements showing that the films exhibit ferroelectric and magnetic hysteresis at room temperature. The local piezoelectric measurements show the presence of ferroelectric domains and their switching at the sub-micron scale.  相似文献   

4.
We report the fabrication of Al-doped ZnO thin-film transistors (FeFETs) on the ferroelectric Pb(Zr0.3Ti0.7)O3 (PZT) gate insulator for the application of nonvolatile random access memory. The results demonstrate the basic principle of Al-doped ZnO resistive switching between the high and low resistive states upon the polarization switching of ferroelectric layer. Own to the good ferroelectric property and high reliability of PZT, such as fatigue, high speed of signal reading and writing, low coercive electric field, etc., this device has an excellent electrical performance. The memory device exhibits a source-drain current modulation with an ON/OFF current ratio close 103.  相似文献   

5.
Films of PZT about 0.2 μm thick with the composition PbZr0.53Ti0.47O3 were prepared using the metalloorganic decomposition (MOD) process. The amorphous films produced by pyrolysis at 350°C were annealed at 550, 575, 600 and 650°C for 10 minutes, 1 hour or 4 hours. Films annealed at temperatures below 550°C showed no ferroelectric behavior while others annealed above 650°C showed signs of loss of ferroelectric behavior. Most films demonstrated satisfactory ferroelectric properties such as low switching voltage and high polarization values. Some PZT films also demonstrated fatigue life-time of more than 109 switching reversals. The performance of the films was dependent on the annealing time and temperature. It was found that films with better initial polarization values did not necessarily demonstrate better fatigue behavior. The causes of film degradation as a result of switching based on the pinning of domains at grain boundaries triggered by the migration of pores is discussed.  相似文献   

6.
Pb(Zr, Ti)O3 thin films were grown on 8-inch Ir(111)/SiO2/Si substrate by a MOCVD system aiming at application utilizing high-density ferroelectric memory (FRAM). Two types of solvents, THF and cyclohexane were used for liquid source delivery. It was found that the ferroelectric properties of the MOCVD-PZT films using cyclohexane solvent were better than them using THF solvent. By choosing cyclohexane as solvent, the MOCVD-PZT thin films showed strong ?111? preferred orientation and the Pt/PZT/Ir capacitors exhibited promising ferroelectric performances, for instance, large switching charge (Qsw) of 56.4 uC/cm2.  相似文献   

7.
Abstract

The dielectric and ferroelectric properties for Au/Pb(Zr,Ti)O3/YBa2Cu3O7?x heterostructures at low temperatures are reported. The fatigue behavior and the ferroelectric switching effect for the structures are also investigated. The PZT/YBCO thin film heterostructures were deposited on MgO(100) substrates by laser ablation. The ferroelectric and dielectric properties and optical response of the oriented PZT films with different thicknesses have been studied over the temperature range from 20 K to 300 K. The dielectric loss of the structure was found to decrease by an order of magnitude when the YBCO bottom electrode became superconducting. A very low fatigue rate of the structure has also been obtained below T c of YBCO layer.  相似文献   

8.
Abstract

Excellent ferroelectric properties of PZT capacitors with 0.15μ m lateral dimension were obtained for the first time using SrRuO3 electrode technology. The switching charge of the capacitor was not degraded even for the 0.15 μ m capacitor. The ferroelectric properties such as saturation, fatigue, and imprint characteristics were similar for the capacitors with 12 μ m to 0.15 μ m dimensions. We demonstrated that the SrRuO3 electrode technology could be used for the future Gbit-scale FeRAMs. An apparent increase in switching charge was also observed with decrease in capacitor size. The ferro-film around the top electrode may contribute to the increase of switching charge.  相似文献   

9.
Abstract

Bi–layered ferroelectric SrBi2Ta2O9 (SBT) films were successfully prepared on Pt/Ti/SiO2/Si substrates at 650°C by a modified rf magnetron sputtering technique. The SBT films annealed for 1 h in O2 (760 torr) and again for 30 min in O2 (5 torr) at 650°C show a average grain size of about 49 nm. The SBT films annealed at 65 0°C have a remanent polarization (Pr) of 6.0 μC/cm2 and coercive field (Ec) of 36 kV/cm at an excitation voltage of 5 V. The films showed fatigue–free characteristics up to 4.0 × 1010 switching cycles under 5 V bipolar pulse. The retention characteristics of SBT films looked very promosing up to 1.0 × 105 s.  相似文献   

10.
Abstract

In this paper we describe recent successes of growth of epitaxial bismuth titanate (BTO) films by pulsed laser deposition (PLD) suitable for electro-optic and electrical switching device structures, and fabrication of an improved gate structure for a ferroelectric memory FET (FEMFET). TEM and x-ray results indicate that excellent crystalline quality BTO films were achieved on LaAlO3. Polarization switching was demonstrated for BTO capacitors with epitaxial superconducting YBa2Cu3O7 as the lower electrode. Using an SiO2 buffer layer, a BTO/Si structure was fabricated and direct charge modulation in the Si by polarization reversal in the BTO was demonstrated.  相似文献   

11.
Abstract

The ferroelectric SBT films were deposited on Pt/Ti/SiO2/Si substrates by liquid injection metalorganic chemical vapor deposition (MOCVD) with single-mixture solution of Sr[Ta(OEt)5(dmae)]2 and Bi(C6H5)3. The Sr/Ta and Bi/Ta ratio in SBT films depended on deposition temperature and mol ratio of precursor in the single-mixture solution. At the substrate temperature of 400°C, Sr/Ta and Bi/Ta ratio were close to 0.4 and 1 at precursor mol ratio of 0.5~1.0. As-deposited film was amorphous. However, after annealing at 750°C for 30 min in oxygen atmosphere, the diffraction patterns indicated polycrystalline SBT phase. The remanent polarization (Pr) and coercive field (Ec) of SBT film annealed at 750°C were 4.7 μC/cm2and 115.7 kV/cm at an applied voltage of 5 V, respectively. The SBT films annealed at 750°C showed practically no polarization fatigue up to 1010 switching cycles.  相似文献   

12.
A new single phase orthorhombic ferroelectric ceramic Na2Pb2La2W2Ti4Nb4O30 (NPLWTN) was prepared via high-temperature solid-state reaction method. The grain morphology of the compound was analyzed by scanning electron microscopy (SEM). Studies of dielectric properties (??r and tan??) of the compound at different frequencies (102?C106?Hz) in a wide temperature range (300?C700?K) showed multiple phase transitions in it. First phase transition observed at 335?K related to structural type (ferroelectric-ferroelectric) and the second one observed at 536?K is related to the ferroelectric to paraelectric. The ferroelectric property of the compound at room temperature was confirmed by polarization (hysteresis) study. Broadened dielectric peaks at low frequencies were observed above ferroelectric to paraelectric phase transition temperature (Tc). The values of exponent n(T) and pre-factor A(T) at and around Tc were obtained by the fitting ac conductivity data with Jonscher??s universal power law. From the variation of n(T) and A(T) with temperature, the strength of interaction among the charge carriers with the crystal lattice and the strength of polarisability at phase transition are observed. The activation energy of the compound in low and high temperature range suggests the conduction mechanism in the material.  相似文献   

13.
Abstract

This paper describes amorphous Pb(Zr, Ti)O3 (PZT) thin films deposited by cosputtering Pb(Zr0.5 Ti0.5)O3 and PbO targets. By optimizing the amount of the excess Pb and the deposition temperature, PZT thin films with a single perovskite phase were obtained successfully on Ir substrates and Pt substrates at 520°C. 250-nm-thick PZT films crystallized by rapid thermal annealing (RTA) at 600°C for 20 s exhibited excellent ferroelectric properties: a coercive voltage of 1.0 V, a remanent polarization density of about 40 μC/cm2, and a polarization switching endurance over 1x109 cycles. Although a heat treatment in a reductive ambient causes degradation of ferroelectric properties of PZT thin films, their degraded ferroelectric properties can be easily recovered from by a 1-min RTA in an oxygen at 400°C.  相似文献   

14.
In this paper we overview our recent work on ferroelectric and magnetoelectric coupling behaviors of multiferroic doped BiFeO3 (BFO) and piezoelectric-magnetostrictive composites. Using rapid liquid sintering method we prepare single-phase BFO ceramics of excellent ferroelectric property. The BFO thin films on Pt-coated silicon wafers by pulsed laser deposition show large remnant polarization but serious ferroelectric switching fatigue. A series of piezoelectric-magnetostrictive composite structures in bulk and thin film forms are prepared and giant magnetoelectric coupling effect of them is observed. The experimentally measured results are confirmed by numerical modeling based on piezoelectric and magnetostrictive constitution equations.  相似文献   

15.
La0.5Sr0.5CoO3/Pb(ZrxTi1–x)O3/La0.5Sr0.5CoO3 capacitors have been successfully fabricated by liquid delivery metalorganic chemical vapor deposition on Si wafers using SrTiO3 thin layer (20 nm) as a template. Zr(dmhd)4 in tetrahydrofuran was used as Zr precursor for compatible thermal behavior with Pb(thd)2 and Ti(OiPr)2(thd)2 precursors. The dependence of the ferroelectric film composition on the precursor mixing ratio and growth temperature has been systematically studied by Rutherford Backscattering (RBS). Ferroelectric and piezoelectric properties at the composition close to morphotropic phase boundary region (Pb(Zr0.5Ti0.5)O3) have been investigated for application in nonvolatile ferroelectric random access memories and microelectromechanical system (MEMS). These capacitors show desirable ferroelectric properties, which proves that this approach is very promising for both fundamental study and potential applications. The changes of spontaneous polarization (Ps) and piezoelectric coefficient (d33) with Ti/(Zr + Ti) ratio are also presented and compared with theoretical values.  相似文献   

16.
Si-added SrBi2Ta2O9 (SBT) ferroelectric films were prepared by RF magnetron sputtering on a Pt/Ti/SiO2/Si (100) structure. The films were deposited at temperatures below 100°C for surpressing Bi evaporation, and crystallized at 800°C in air. A typical composition was Sr0.79Bi2.37Ta2.00Si0.2Ox. The remanent polarization value (2Pr) of the Si-added SBT film was 16 μC/cm2. The Si atom addition was found to be effective in improvement of the fatigue and leakage current of SBT ferroelectric films. The leakage current density was further improved by annealing in the high-pressure oxygen ambient at 7 atms.  相似文献   

17.
Abstract

MFIS structures having excellent clear interfaces and well-crystallized ferroelectric layer were successfully fabricated by a newly developed ultra thin metal buffer layer process on SiO2/Si. We examined the effect of sputtered Zr or ZrO2 ultra thin films as a buffer layer for PbxLa1?xTiO3 (PLT) growth. TEM observation revealed that the buffer layer formation process in which Zr oxidized after the metal deposition had advantages to produce MFIS structures. This method is also superior for the crystallization and the control of the orientation of PLT thin film on amorphous SiO2. Especially, for buffer layer thicknesses below 10 nm, preferred c-axis oriented PLT thin films were grown. The I-V characteristics of MFIS-FET fabricated by the proposed method showed a clear memory window due to the remanent polarization of the ferroelectric thin film. This process is the most attractive candidate for realizing MFIS structure memory.  相似文献   

18.
Abstract

Applying voltage between the conductive tip in atomic force microscopy (AFM) and bottom electrode through Pb(Zr, Ti)O3 (PZT) films can cause switching of ferroelectric domains. Formation and imaging of ferroelectric domains in nanometer scale could be applied to develop the future ultrahigh-density memory device. Relevant issues, i.e. bit (induced ferroelectric domains) size dependence on applied voltage and pulse width, are discussed. The bit size showed a log-linear dependence on the pulse width and a linear dependence on the pulse voltage. Using the analysis of electric field distribution, the size of the induced bits under certain pulse voltage and width was estimated.  相似文献   

19.
Abstract

Ex-situ grown thin films of SrBi2Nb2O9 (SBN) were deposited on platinum substrates using laser ablation technique. A low substrate-temperature-processing route was chosen to avoid any diffusion of bismuth into the Pt electrode. It was observed that the as grown films showed an oriented growth along the ′c′-axis (with zero spontaneous polarization). The as grown films were subsequently annealed to enhance crystallization. Upon annealing, these films transformed into a polycrystalline structure, and exhibited excellent ferroelectric properties. The switching was made to be possible by lowering the thickness without losing the electrically insulating behavior of the films. The hysteresis results showed an excellent square-shaped loop with results (Pr = 4 uC/cm2; Ec = 90 kV/cm) in good agreement with the earlier reports. The films also exhibited a dielectric constant of 190 and a dissipation factor of 0.02, which showed dispersion at low frequencies. The frequency dispersion was found to obey Jonscher's universal power law relation, and was attributed to the ionic charge hopping process according to earlier reports. The dc transport studies indicated an ohmic behavior in the low voltage region, while higher voltages induced a bulk space charge and resulted in non-linear current-voltage dependence.  相似文献   

20.
Polarization-voltage (P-V) hysteresis loops and polarization retention were studied for Au/Pb(Zr0.96Ti0.04)O3/Al2O3/Pt antiferroelectric capacitors with different Al2O3 layer thicknesses. The high-field ferroelectric phase after poling can be pertained to zero external field with the choice of an appropriate Al2O3 layer thickness. At the same time, a strong depolarization field across the Al2O3 layer is generated with the direction opposite to the field across the Pb(Zr0.96Ti0.04)O3 layer. The depolarization-field direction can be reversed with the domain switching of the high-field ferroelectric phase, possessing the potential application of antiferroelectric memories. A large memory window of 10 V was observed for Au/Pb(Zr0.96Ti0.04)O3 (50 nm)/Al2O3 (6.3 nm)/n-Si (100) field-effect transistors, as confirmed from the capacitance sweeping under voltages between ?19 and +19 V. The high/low capacitance ratio is over 8:1, and the ratio remains stable with time over 4 h after programming voltage of ±19 V at 80°C, in suggestion of the excellent retention of the memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号