首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a control scheme that combines a kinematic controller and a sliding mode dynamic controller with external disturbances is proposed for an automatic guided vehicle to track a desired trajectory with a specified constant velocity. It provides a method of taking into account specific mobile robot dynamics to convert desired velocity control inputs into torques for the actual mobile robot. First, velocity control inputs are designed for the kinematic controller to make the tracking error vector asymptotically stable. Then, a sliding mode dynamic controller is designed such that the mobile robot’s velocities converge to the velocity control inputs. The control law is obtained based on the backstepping technique. System stability is proved using the Lyapunov stability theory. In addition, a scheme for measuring the errors using a USB camera is described. The simulation and experimental results are presented to illustrate the effectiveness of the proposed controller.  相似文献   

2.
The first objective of this research was to develop an omnidirectional home care mobile robot. A PC-based controller controls the mobile robot platform. This service mobile robot is equipped with an “indoor positioning system” and an obstacle avoidance system. The indoor positioning system is used for rapid and precise positioning and guidance of the mobile robot. The obstacle avoidance system can detect static and dynamic obstacles. In order to understand the stability of a three-wheeled omnidirectional mobile robot, we carried out some experiments to measure the rectangular and circular path errors of the proposed mobile robot in this research. From the experimental results, we found that the path error was smaller with the guidance of the localization system. The mobile robot can also return to its starting point. The localization system can successfully maintain the robot’s heading angle along a circular path.  相似文献   

3.
In order to satisfy need for enhanced user affinity for robots, we are attempting to give robots a “consciousness” such as that identified in humans and animals. We developed software to control a robot’s actions including emotion by introducing the evaluation function of action choice into the hierarchical structure model. This connected the robot’s consciousness with the robot’s action. We named the process Consciousness-based Architecture (CBA). However, it is difficult to change the consciousness of the robot only using this CBA model. In order to induce and change autonomously consciousness and action for the robot, some motivation is required. Therefore, a motivation model has been developed to induce and change autonomously, and is combined with CBA. To inspect CBA including the motivation model, a robot arm (Conbe-I) has been developed with a small Web camera built into the fingers. CBA was installed on this Conbe-I, and the autonomous actions performed to catch an object were inspected. A motivation model of the robot was devised to describe interests for the aim thing of the robot and the desire of the robot. To build this motivation model, we studied the action of dopamine, which added activity to the robot, in conjunction with the incentive to do an action. In this paper described about the expression of the emotion by a robot incorporated this motivation model in Conbe-I. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   

4.
In this article, we propose a localization scheme for a mobile robot based on the distance between the robot and moving objects. This method combines the distance data obtained from ultrasonic sensors in a mobile robot, and estimates the location of the mobile robot and the moving object. The movement of the object is detected by a combination of data and the object’s estimated position. Then, the mobile robot’s location is derived from the a priori known initial state. We use kinematic modeling that represents the movement of a robot and an object. A Kalman-filtering algorithm is used for addressing estimation error and measurement noise. Throughout the computer simulation experiments, the performance is verified. Finally, the results of experiments are presented and discussed. The proposed approach allows a mobile robot to seek its own position in a weakly structured environment. This work was presented in part at the 12th International Symposium on Artificial Life and Robotics, Oita, Japan, January 25–27, 2007  相似文献   

5.
A mathematical model of the motion of a vibration-driven robot on a vertical metallic surface due to an adhesive electromagnetic device and rotation of unbalanced masses built into the robot’s body is constructed. The motion principle is described in detail and a design scheme of the robot is presented. As a result of computational experiments, the laws of the robot’s motion are established. The parameters that most affect the motion are determined.  相似文献   

6.
This paper presents methodologies and techniques for posture estimation and tracking of an autonomous mobile robot (AMR) using a laser scanner with at least three retro-reflectors. A three-point laser triangulation method is presented to find an initial posture of the robot and then a fuzzy extended information filtering (FEIF) method is used to improve the accuracy of the robot’s posture estimation. With the odometric information from the driving wheels, a FEIF-based posture tracking algorithm is proposed to continuously keep trace of the robot’s posture at slow speeds. Simulation and experimental results are conducted to show the efficacy and usefulness of the proposed methods.  相似文献   

7.
This paper deals with the implementation of emotions in mobile robots performing a specified task in a group in order to develop intelligent behavior and easier forms of communication. The overall group performance depends on the individual performance, group communication, and the synchronization of cooperation. With their emotional capability, each robot can distinguish the changed environment, can understand a colleague robot’s state, and can adapt and react with a changed world. The adaptive behavior of a robot is derived from the dominating emotion in an intelligent manner. In our control architecture, emotion plays a role to select the control precedence among alternatives such as behavior modes, cooperation plans, and goals. Emotional interaction happens among the robots, and a robot is biased by the emotional state of a colleague robot in performing a task. Here, emotional control is used for a better understanding of the colleague’s internal state, for faster communication, and for better performance eliminating dead time. This work was presented in part at the 12th International Symposium on Artificial Life and Robotics, Oita, Japan, January 25–27, 2007  相似文献   

8.
The synthesis control problem for the plane motion of a wheeled robot with constrained control resource is studied. The goal of the control is to bring the robot to an assigned curvilinear trajectory and to stabilize its motion along it. A new change of variable is suggested that reduces the problem of stabilizing robot’s motion to that of stabilizing the zero solution in the form that admits feedback linearization. A control law stabilizing robot’s motion along an arbitrary curvilinear target trajectory is synthesized. For a straight target path, the closed-loop system is shown to be asymptotically stable for any initial conditions except for the case where the initial direction of motion is perpendicular to the target path.  相似文献   

9.
10.
Robust DOA estimation and target docking for mobile robots   总被引:1,自引:1,他引:0  
Direction of arrival (DOA) guided automated target acquisition and docking system is proposed for mobile robots employing the dual-directional antenna system. The dual-directional antenna estimates the DOA of the signal of interest using the ratio of the signal strengths between two adjacent antennas. In practice, DOA estimation poses a significant technical challenge, since the RF signal is easily distorted by the environmental conditions. Therefore, the robot often loses its way in an electromagnetically disturbed environment. To cope with this problem, a robust DOA estimation algorithm is developed based on Kalman filtering. This algorithm allows the robot to reduce the potential error in the estimated DOA, and adjust the robot’s heading to the target transponder without needing to know the positions of current and previous measurements in a global coordinate system. The simulation and experiment results clearly demonstrate that the mobile robot equipped with the developed system is able to dock to a target transponder in an indoor environment partially occupied by obstacles.  相似文献   

11.
We propose a new robust trajectory tracking control scheme for wheeled mobile robots without longitudinal velocity measurements. In the proposed controller, a velocity observer is used to estimate the longitudinal velocity of a wheeled mobile robot. A wheeled mobile robot model, including motor dynamics, is used to develop the controller. The developed controller has the following useful properties. (1) The developed controller does not require any accurate knowledge of the robot parameters or the motor parameters. Even if there are uncertainties in the robot dynamics, including the motor properties, it is certain that tracking errors ultimately become uniformly bounded in a closed-loop system using the developed controller. (2) It is shown theoretically that the ultimate norms of tracking errors can easily be reduced by setting only one design parameter.  相似文献   

12.
This article proposes a method for adapting a robot’s perception of fuzzy linguistic information by evaluating vocal cues. The robot’s perception of fuzzy linguistic information such as “very little” depends on the environmental arrangements and the user’s expectations. Therefore, the robot’s perception of the corresponding environment is modified by acquiring the user’s perception through vocal cues. Fuzzy linguistic information related to primitive movements is evaluated by a behavior evaluation network (BEN). A vocal cue evaluation system (VCES) is used to evaluate the vocal cues for modifying the BEN. The user’s satisfactory level for the robot’s movements and the user’s willingness to change the robot’s perception are identified based on a series of vocal cues to improve the adaptation process. A situation of cooperative rearrangement of the user’s working space is used to illustrate the proposed system by a PA-10 robot manipulator.  相似文献   

13.
A real-time object tracking and collision avoidance method is presented for mobile robot navigation in indoors environments using stereo vision and a laser sensor. Stereo vision is used to identify the target and to calculate its relative distance from the mobile robot while laser based range measurements are utilized to avoid collision with surrounding objects. The target is tracked by its predetermined or dynamically defined color. The mobile robot’s velocity is dynamically adjusted according to its distance from the target. Experimental results in indoor environments demonstrate the effectiveness of the method.  相似文献   

14.
In this article, we present a novel approach to learning efficient navigation policies for mobile robots that use visual features for localization. As fast movements of a mobile robot typically introduce inherent motion blur in the acquired images, the uncertainty of the robot about its pose increases in such situations. As a result, it cannot be ensured anymore that a navigation task can be executed efficiently since the robot’s pose estimate might not correspond to its true location. We present a reinforcement learning approach to determine a navigation policy to reach the destination reliably and, at the same time, as fast as possible. Using our technique, the robot learns to trade off velocity against localization accuracy and implicitly takes the impact of motion blur on observations into account. We furthermore developed a method to compress the learned policy via a clustering approach. In this way, the size of the policy representation is significantly reduced, which is especially desirable in the context of memory-constrained systems. Extensive simulated and real-world experiments carried out with two different robots demonstrate that our learned policy significantly outperforms policies using a constant velocity and more advanced heuristics. We furthermore show that the policy is generally applicable to different indoor and outdoor scenarios with varying landmark densities as well as to navigation tasks of different complexity.  相似文献   

15.
In this paper, the leader-waypoint-follower formation is constructed based on relative motion states of nonholonomic mobile robots. Since the robots’ velocities are constrained, we proposed a geometrical waypoint in cone method so that the follower robots move to their desired waypoints effectively. In order to form and maintain the formation of multi-robots, we combine stable tracking control method with receding horizon (RH) tracking control method. The stable tracking control method aims to make the robot’s state errors stable and the RH tracking control method guarantees that the convergence of the state errors tends toward zero efficiently. Based on the methods mentioned above, the mobile robots formation can be maintained in any trajectory such as a straight line, a circle or a sinusoid. The simulation results based on the proposed approaches show each follower robot can move to its waypoint efficiently. To validate the proposed methods, we do the experiments with nonholonomic robots using only limited on-board sensor information.  相似文献   

16.
A control synthesis problem for a wheeled robot moving on uneven terrain is studied. The terrain is assumed to be described by a sufficiently smooth function that does not vary too much at distances of the order of the platform size, which makes it possible to employ a planar robot model. The terrain model is not a priori known, and the information on the local terrain configuration is made available for the robot through measuring its pitch and roll angles. The control goal is to bring the robot to a given curvilinear path and to stabilize robot’s motion along it. A change of variables is found by means of which the system of differential equations governing controlled motion of the robot reduces to the form that admits feedback linearization. A numerical example presented demonstrates advantages of the synthesized control compared to that derived without regard to the terrain unevenness. It is shown that the latter is generally not capable of stabilizing robot’s motion with a desired accuracy.  相似文献   

17.
This paper describes a hands-off socially assistive therapist robot designed to monitor, assist, encourage, and socially interact with post-stroke users engaged in rehabilitation exercises. We investigate the role of the robot’s personality in the hands-off therapy process, focusing on the relationship between the level of extroversion–introversion of the robot and the user. We also demonstrate a behavior adaptation system capable of adjusting its social interaction parameters (e.g., interaction distances/proxemics, speed, and vocal content) toward customized post-stroke rehabilitation therapy based on the user’s personality traits and task performance. Three validation experiment sets are described. The first maps the user’s extroversion–introversion personality dimension to a spectrum of robot therapy styles that range from challenging to nurturing. The second and the third experiments adjust the personality matching dynamically to adapt the robot’s therapy styles based on user personality and performance. The reported results provide first evidence for user preference for personality matching in the assistive domain and demonstrate how the socially assistive robot’s autonomous behavior adaptation to the user’s personality can result in improved human task performance. This work was supported by USC Women in Science and Engineering (WiSE) Program and the Okawa Foundation.  相似文献   

18.
19.
In the development of a robot, the validation of that robot with the use of real machinery takes a considerable amount of time and money. In particular, it is difficult to validate a robot’s behavior in an unsafe place. The developers also have to pay attention to virtual debugging. Using a program validated in VR space makes the verification of a real machine’s behavior more efficient. In this research, we make a virtual robot walk on a road autonomously by using a program where the virtual robot tracks a line in a virtual environment.  相似文献   

20.
Balance control of a biped robot using camera image of reference object   总被引:1,自引:0,他引:1  
This paper presents a new balance control scheme for a biped robot. Instead of using dynamic sensors to measure the pose of a biped robot, this paper uses only the visual information of a specific reference object in the workspace. The zero moment point (ZMP) of the biped robot can be calculated from the robot’s pose, which is measured from the reference object image acquired by a CCD camera on the robot’s head. For balance control of the biped robot a servo controller uses an error between the reference ZMP and the current ZMP, estimated by Kalman filter. The efficiency of the proposed algorithm has been proven by the experiments performed on both flat and uneven floors with unknown thin obstacles. Recommended by Editorial Board member Dong Hwan Kim under the direction of Editor Jae-Bok Song. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD). This research was supported by the MKE(The Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology Research Center) support program supervised by the IITA(Institute for Information Technology Advancement) (IITA-2008-C1090-0803-0006). Sangbum Park received the B.S. and M.S. degrees from Electronic Engineering of Soongsil University, Seoul, Korea, in 2004 and 2006 respectively. He has been with School of Electronic Engineering, Soongsil University since 2006, where he is currently pursuing a Ph.D. His current research interests include biped walking robot, robotics vision. Youngjoon Han received the B.S., M.S. and Ph.D. degrees in Electronic Engineering from Soongsil University, Seoul, Korea, in 1996, 1998, and 2003, respectively. He is currently an Assistant Professor in the School of Electornic Engineering at Soongsil University. His research interests include robot vision system, and visual servo control. Hernsoo Hahn received the B.S. and M.S. degrees in Electronic Engineering at Soongsil University and Younsei University, Korea in 1982 and 1983 respectively. He received the Ph.D. degree in Computer Engineering from University of Southern California in 1991, and became an Assistant Professor at the School Electroncis Engneering in Soongsil University in 1992. Currently, he is a Professor. His research interests include application of vision sensors to mobile robots and measurement systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号