首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
采用低密度聚乙烯/乙烯-醋酸乙烯/三元乙丙橡胶(PE-LD/EVA/EPDM)共混物为电缆护套料的基材,分别以复配的氢氧化镁/氢氧化铝[Mg(OH)2/Al(OH)3]和单组分的Mg(OH)2为阻燃体系,研究了这两种阻燃体系对材料的阻燃性能和力学性能的影响。结果表明,随着Mg(OH)2/Al(OH)3比例的增大,材料的拉伸强度和极限氧指数增加,但断裂伸长率不断下降;在以Mg(OH)2为阻燃剂的体系中,材料的极限氧指数与Mg(OH)2的添加量成正比,而拉伸强度和断裂伸长率与其成反比,当Mg(OH)2的添加量在40~50份时,材料的极限氧指数能够达到29%以上,力学性能也优于Mg(OH)2/Al(OH)3体系阻燃的材料。  相似文献   

2.
采用氧化铝(Al2O3)为导热填料、氢氧化镁[Mg(OH)2]为阻燃填料,以低密度聚乙烯(PE-LD)和乙烯醋酸乙烯共聚物(EVA)为基体树脂制备导热阻燃复合材料。通过导热性能测试、燃烧行为表征(极限氧指数和垂直燃烧测试)以及热重分析研究了PE LD/EVA/Al2O3/Mg(OH)2复合材料的导热性能、阻燃性能及热稳定性。结果表明,含有50份Al2O3及50份Mg(OH)2的复合材料,在PE-LD/EVA质量比为1/1时,热导率可达到1.21 W/m·K;材料的阻燃性能及热稳定性都随 EVA 含量的增加而增大,极限氧指数从27.0 % 提高到31.5 %,UL 94 垂直燃烧从无等级提高到V-0级,残炭率从46.5 %提高到57.7 %。  相似文献   

3.
研究了磷-硅阻燃剂(EMPZR)与氢氧化镁[Mg(OH)2]对乙烯-醋酸乙烯酯共聚物(EVA)阻燃性能的影响。结果表明,复合阻燃剂的添加量为50%(质量分数,下同)时[EMPZR与Mg(OH)2质量比为1∶4],所制得的阻燃EVA材料的极限氧指数可达36.0%,并且复合材料的热失重速率较纯EVA有明显下降,成炭率显著提高,600℃时残炭量为32.2%;通过对极限氧指数测试前后阻燃EVA材料红外光谱的分析,证实了Mg(OH)2与EMPZR在EVA中具有良好的协效阻燃作用。  相似文献   

4.
采用低密度聚乙烯/乙烯-醋酸乙烯(PE-LD/EVA)为电缆料的主体基材,氢氧化镁[Mg(OH)2]为主阻燃剂,研究了乙烯-辛烯共聚物(POE)和有机蒙脱土(OMMT)对电缆料力学性能和阻燃性能的影响;并利用γ射线交联技术,探讨了辐射剂量对材料力学性能和阻燃性能的影响。结果表明,随着POE用量的增加,材料的拉伸强度和断裂伸长率增加,但硬度降低;OMMT的添加量为4份时,其与Mg(OH)2可以产生最佳的协同效应,改善了材料的力学性能和阻燃性能;当辐照剂量在90~100 kGy时,PE-LD/EVA/Mg(OH)2/OMMT=50/50/60/4的共混体系的综合性能达到比较理想的水平,其极限氧指数超过32 %,拉伸强度为11 MPa,断裂伸长率超过900 %。  相似文献   

5.
采用极限氧指数仪和拉伸仪研究了膨胀阻燃剂阻燃乙烯醋酸乙烯共聚物(EVA)体系(APP/PER/MCA/ EVA)的阻燃及力学性能,并采用热重-质谱联用仪对该体系在空气中的热氧化降解进行了分析。结果表明,在APP/PER/MCA的配比为8/4/3、总添加量为40 % 时,阻燃EVA样品的阻燃和力学性能最好,其极限氧指数和拉伸强度分别为26 % 和6.62 MPa;与纯EVA相比,膨胀阻燃剂阻燃EVA的起始分解温度和失重率分别降低100 ℃和10 %,吸热量明显降低;阻燃EVA的热氧化降解过程中,H2O、CO2等小分子产物发生明显变化,且阻燃后苯环类化合物明显减少。  相似文献   

6.
针对高填充无机阻燃剂造成低密度聚乙烯(PE-LD)力学性能下降的问题,分别选择硫磺、过氧化物、酚醛树脂作为交联剂,采用动态硫化法制备了无卤阻燃PE-LD/三元乙丙橡胶(EPDM)复合材料。结果表明,硫磺作为交联剂,PE-LD/EPDM/硫磺/硫化促进剂TMTD/硫化促进剂DM/ZnO/抗氧剂的配比为60/40/1.6/2/1/0.5/0.5时,复合材料的力学性能最佳;与PE-LD/EPDM简单共混相比,采用硫磺体系通过动态硫化法制备的无卤阻燃材料的力学及阻燃性能均得到显著提高。当无机阻燃剂含量为45 %时,添加20 %的EPDM并采用动态硫化法制得无卤阻燃PE-LD材料具有很好的综合性能,拉伸强度、断裂伸长率、冲击强度分别为9.59 MPa、293.6 %、36.5 kJ/m2,极限氧指数为29.1 %,垂直燃烧达到UL94 V-0级。  相似文献   

7.
通过添加不同比例的煤矸石构筑环境友好型阻燃材料类水滑石(LDHs),X射线衍射结果显示LDHs结构完整。以乙烯-乙酸乙烯共聚物(EVA)为基体树脂,LDHs为复配阻燃剂制备EVA/LDHs复合材料。采用极限氧指数仪、锥形量热仪、烟密度测试仪等研究了复合材料的燃烧性能和抑烟性能,并探讨了相应的阻燃及抑烟作用机理。结果表明:EVA3[n(Mg2+)∶n(Al3+)为3∶1]的极限氧指数最高,达到28.30%;与纯EVA相比,EVA/LDHs复合材料的热释放速率、质量损失、烟生成速率均显著降低,表现出良好的阻燃性能;在点火和未点火情况下,复合材料均体现出良好的抑烟性能。  相似文献   

8.
采用Mg(OH)2作为无卤阻燃剂对聚丙烯(PP)进行了阻燃改性.结果表明,随Mg(OH)2加人,体系的冲击强度和断裂伸长率有所下降,热变形温度、弯曲强度和氧指数有所提高,极限氧指数达到29%.在50 kW/m2热辐照条件下,利用锥形量热仪研究了Mg(OH)2阻燃聚丙烯体系的燃烧性,Mg(OH)2能明显降低PP的热释放速率(HRR)、有效燃烧热(EHC)和质量损失速率(MLR).  相似文献   

9.
利用垂直燃烧(UL-94)、极限氧指数、热失重分析(TGA)、扫描电镜(SEM)等测试方法从热分解阶段的机理、燃烧表面炭层形貌等方面对三聚氰胺氰尿酸盐(MCA)在乙烯-乙酸乙烯共聚物(EVA)/氢氧化镁(MH)和EVA/氢氧化铝(ATH)体系的协效阻燃机理进行研究。结果表明,在阻燃剂总含量相同的情况下,EVA/MH/MCA体系的UL-94达到V-0级,极限氧指数可达到33.4%,而EVA/ATH/MCA则无法通过UL-94测试;EVA/MH/MCA体系热稳定性更好;EVA/MH/MCA体系形成的炭层结构更加紧密,阻燃性能更好。  相似文献   

10.
《塑料科技》2016,(5):23-27
采用膨胀石墨(EG)、聚磷酸铵(APP)和Mg(OH)2对软质聚氨酯泡沫(FPUF)进行阻燃处理,并对其力学性能进行了研究。利用氧指数和锥形量热方法研究了不同阻燃剂配比对FPUF的阻燃抑烟性能的影响,通过扫描电镜研究了FPUF燃烧后残炭的微观形貌和阻燃机理。结果表明:当APP/EG/Mg(OH)2质量比为2:1:1时,阻燃效果最佳,其中APP/EG阻燃性较好,而Mg(OH)2能有效地抑制烟和CO的释放,三者复配具有很好的阻燃抑烟效果,可使FPUF的氧指数达到27.1%以上,且生烟量低。  相似文献   

11.
Al(OH)3和Mg(OH)2阻燃EVA性能的研究   总被引:1,自引:0,他引:1  
选用形貌、粒径尺寸及分布相近的两种无机阻燃剂氢氧化铝(Al(OH)3)和氢氧化镁(Mg(OH)2),研究了二者用量对乙烯-醋酸乙烯酯共聚物(EVA)复合材料的力学性能和阻燃性能的影响,并比较了添加红磷的复合材料的力学性能和阻燃性能。研究表明:Al(OH)3和Mg(OH)2用量对复合材料性能影响比较相似,随着阻燃剂用量的增加,复合材料的阻燃性能提高,拉伸强度增加,但断裂伸长率下降;通过锥形量热仪数据看出:Al(OH),的点燃时间短,最大热释放速率和平均热释放速率低,火行为指数大,阻燃效果比Mg(OH)2好;红磷的加入对复合材料力学性能影响不大,而对阻燃性能影响较大。Mg(OH)2与红磷复配能提高复合材料的氧指数,但是,从水平和垂直燃烧角度考虑,Al(OH)3与红磷之间的阻燃协效效果更好。  相似文献   

12.
以氢氧化镁[Mg(OH)2]和微胶囊红磷(MRP)为阻燃剂制备了无卤阻燃乙烯-醋酸乙烯共聚物(EVA)复合材料。通过极限氧指数、热失重分析和力学性能研究了硅酸盐纳米短纤维 (SNF) 以及马来酸酐接枝乙烯-醋酸乙烯共聚物(EVA-g-MAH)的加入对EVA阻燃性能和力学性能的影响,并通过扫描电子显微镜对其断面形貌和残炭表面形貌进行了观察和分析。结果表明,加入适量的EVA-g-MAH可以提高复合材料的极限氧指数和力学性能,加入12份的EVA-g-MAH后,材料的拉伸强度可达到10.2 MPa,断裂伸长率达到521 %,极限氧指数为39%,垂直燃烧达到V-0级别;加入适量的SNF后,可以显著提高复合材料的拉伸强度,当添加20份的SNF后,复合材料各性能最优,拉伸强度为12.3 MPa,断裂伸长率为210 %,极限氧指数为38%,垂直燃烧达到V-0级别。  相似文献   

13.
以氢溴酸三聚氰胺盐(MHB)、聚磷酸铵(APP)、阻燃增效协同剂2、3-二甲基-2、3-二苯基丁烷( DMDPB )3种物质为原料复配成一种新型磷溴氮复合阻燃剂,将不同复配比例的复合阻燃剂添加到聚丙烯(PP)中,对阻燃PP材料的阻燃性能、力学性能及熔体流动速率进行测试,探讨3种物质的最佳复配比;并研究了该复合阻燃剂的添加量对材料阻燃性能的影响。结果表明,当MHB:APP:DMDPB的配比为10:10:1时,为最佳复配比;当磷氮溴复合阻燃剂的添加量为2.0 %(质量分数,下同)时,其极限氧指数值为30.8 %,燃烧等级为UL 94 V-1。  相似文献   

14.
张翔  张帆 《中国塑料》2012,(7):80-84
以干法合成的P-N无卤膨胀阻燃剂(IFR)为基础,配合聚磷酸胺(APP)并且将金属氧化物(ZnO)作为协效剂阻燃改性低密度聚乙烯(PE-LD)。采用扫描电子显微镜对该体系燃烧后的炭层结构进行了分析。通过红外光谱和X射线光电子能谱研究了该体系在不同温度热处理后的残炭组成,并分析了该膨胀型阻燃体系对PE-LD的阻燃机理。结果表明,PE-LD/IFR/APP/ZnO体系的极限氧指数可以达到27.9%,垂直燃烧性能达到UL 94V-0级。  相似文献   

15.
以多聚磷酸铵(APP)与新型成炭剂(CNCH-DA)复配成新型膨胀型阻燃剂(IFR),采用氧指数测定仪、垂直燃烧测定仪、微型量热仪、热重分析仪和扫描电子显微镜研究了CNCH-DA 对低密度聚乙烯(PE-LD)/IFR复合材料阻燃性能的影响。结果表明,当APP与CNCH-DA以质量比5:1复配时,PE-LD/IFR复合材料的极限氧指数达到27.5 %,且达到UL 94 V-0级;当APP与CNCH-DA复配后,PE-LD的燃烧性能下降;APP与CNCH-DA复配后,PE-LD/IFR复合材料的热降解有所推迟;PE-LD/IFR在燃烧后能形成致密且蓬松的炭层,起到良好的阻燃效果,而PE-LD/CNCH-DA则形成蓬松而不致密的微球,阻隔能力差。  相似文献   

16.
以聚磷酸铵(APP)复配季戊四醇(PER)为膨胀型阻燃剂(IFR)制备了无卤阻燃乙烯-醋酸乙烯共聚物(EVA)/IFR复合材料,通过极限氧指数仪、热失重分析仪及扫描电子显微镜研究分析了4A分子筛和SiO2的加入对复合材料阻燃性能、热稳定性能及复合材料残炭表面形貌的影响。结果表明,加入4A分子筛可以明显提高复合材料的极限氧指数,当添加1份4A分子筛时,复合材料的极限氧指数达到31%,比未添加时提高了2%;4A分子筛的加入使复合材料在燃烧过程出现熔融滴落现象;继续加入SiO2可以进一步提高复合材料的极限氧指数,当添加3份SiO2时,复合材料的垂直燃烧测试达到V-0级。  相似文献   

17.
徐晓光 《中国塑料》2012,26(8):60-63
以聚磷酸铵(APP)和季戊四醇(PER)为膨胀型阻燃剂(IFR)制备了含有蒙脱土的无卤阻燃乙烯 醋酸乙烯共聚物(EVA)复合材料。通过极限氧指数、热失重分析、锥形量热分析等手段研究了有机蒙脱土(OMMT)的存在对EVA阻燃性能和热降解性能的影响,并通过扫描电子显微镜对复合材料残炭表面形貌进行了观察和分析。结果表明,加入有机蒙脱土可以促进复合材料成炭、改善炭层质量,从而起到了良好的隔热、抑烟作用;OMMT的最佳添加量为3份(质量份数,下同),复合材料的极限氧指数可达到29.4 %,垂直燃烧可达V 0级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号