首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The {alpha}/{beta} hydrolase fold   总被引:1,自引:0,他引:1  
We have identified a new protein fold—the /ßhydrolase fold—that is common to several hydrolytic enzymesof widely differing phylogenetic origin and catalytic function.The core of each enzyme is similar: an /ß sheet, notbarrel, of eight ß-sheets connected by -helices. Theseenzymes have diverged from a common ancestor so as to preservethe arrangement of the catalytic residues, not the binding site.They all have a catalytic triad, the elements of which are borneon loops which are the best-conserved structural features inthe fold. Only the histidine in the nucleophile-histidine-acidcatalytic triad is completely conserved, with the nucleophileand acid loops accommodating more than one type of amino acid.The unique topological and sequence arrangement of the triadresidues produces a catalytic triad which is, in a sense, amirror-image of the serine protease catalytic triad. There arenow four groups of enzymes which contain catalytic triads andwhich are related by convergent evolution towards a stable,useful active site: the eukaryotic serine proteases, the cysteineproteases, subtilisins and the /ß hydrolase fold enzymes.  相似文献   

2.
We present here a spectroscopic structural characterizationof octarellin, a recently reported de novo protein modelledon /ß-barrel proteins [K. Go raj, A.Renard and J.A.Martial(1990) Protein Engng, 3, 259–266]. Infrared and Ramanspectra analyses of octarellin‘s secondary structure revealthe expected percentage of -helices (30%) and a higher ß-sheetcontent (40%) than predicted from the design. When the Ramanspectra obtained with octarellin and native triosephosphateisomerase (a natural /ß-barrel) are compared, similarpercentages of secondary structures are found. Thermal denaturationof octarellin monitored by CD confirms that its secondary structuresare quite stable, whereas its native-like tertiary fold is not.Tyrosine residues, predicted to be partially hidden from solvent,are actually exposed as revealed by Raman and UV absorptionspectra. We conclude that the attempted /ß-barrelconformation in octarellin may be loosely packed. The criteriaused to design octarellin are discussed and improvements suggested.  相似文献   

3.
An 8-fold {beta}{alpha} barrel protein with redundant folding possibilities   总被引:4,自引:0,他引:4  
Protein sequences containing redundant segments of secondarystructure at both termini have the choice a priori of foldinginto several possible circularly permuted variants of the wild-typetertiary structure. To test this hypothesis the gene of phosphoribosylanthranilate isomerase from yeast, which is a single-domain8-fold ß barrel protein, was modified to produce a10-fold ß homologue in Escherichia coli. It containeda duplicate of the two C-terminal ß units of supersecondarystructure fused to its N-terminus. Most of the protein was recoveredfrom the insoluble fraction of disrupted cells by dissolutionin guanidinium chloride solutions and refolding. Pristine proteinwas purified from the soluble fraction. The purified (ß)10proteins were enzymically almost fully active. Absorbance, fluorescenceand circular dichroism spectra as well as the reversible unfoldingbehaviour of both proteins were also very similar to the propertiesof the original (ß)8 protein. Digestion with endopeptidasesconverted both the pristine and the refolded (ß)10variant to the same large fragment that had the N-terminal sequenceand mol. wt of the wild-type ß)8 protein. The datasuggest that the folding of the (ß)10 variant is controlledthermodynamically both in vivo and in vitro.  相似文献   

4.
Bacterial luciferase (EC 1.14.143) is a heterodimer composedof and ß-chains encoded by luxA and luxB, respectively.Although some interspecific combinations of these subunits leadto active enzyme, others do not. The ß subunits ofVibrio fischeri and Photobacterium leiognathi form active enzymewith the subunits of V.fischeri, P.leiognathi and Vibrio harveyi,while the ß subunit from V.harveyi only complementsthe subunit of V.harveyi. Inactivity is caused by a lack ofdimerization of the ß subunit of V.harveyi with the subunits of V.fischeri and P.leiognathi. These observationsserved as the basis for a search to discover which segment ofthe ß polypeptide confers the ability to dimerizewith the subunits of V.fischeri and P.leiognathi. Intragenicß subunit hybrids were made between V.harveyi, V.fischeriand P.leiognathi. Unique restriction sites were introduced intothe respective luxB genes to divide them into four roughly equalsegments. In all, 78 hybrids were constructed by in vitro techniques.The N-terminal segment of the peptide contains the signals thatdifferentiate between the ß subunits of V.fischeriand P.leiognathi and the ß subunit of V.harveyi, andallow the former to dimerize with their a subunits. The secondsegment has no major effect on enzyme activity but does exhibitsome context effects. Important interactions were found betweenthe third and fourth segments of the polypeptide with respectto enzymatic activity.  相似文献   

5.
We present an efficient technique for the comparison of proteinstructures. The algorithm uses a vector representation of thesecondary structure elements and searches for spatial configurationsof secondary structure elements in proteins. In such recurringprotein folds, the order of the secondary structure elementsin the protein chains is disregarded. The method is based onthe geometric hashing paradigm and implements approaches originatingin computer vision. It represents and matches the secondarystructure element vectors in a 3-D translation and rotationinvariant manner. The matching of a pair of proteins takes onaverage under 3 s on a Silicon Graphics Indigo2 workstation,allowing extensive all-against-all comparisons of the data setof non-redundant protein structures. Here we have carried outsuch a comparison for a data set of over 500 protein molecules.The detection of recurring topological and non-topological,secondary structure element order-independent protein foldsmay provide further insight into evolution. Moreover, as theserecurring folding units are likely to be conformationalHy favourable,the availability of a data set of such topological motifs canserve as a rich input for threading routines. Below, we describethis rapid technique and the results it has obtained. Whilesome of the obtained matches conserve the order of the secondarystructure elements, others are entirely order independent. Asan example, we focus on the results obtained for Che Y, a signaltransduction protein, and on the profilin-ß-actincomplex. The Che Y molecule is composed of a five-stranded,parallel ß-sheet flanked by five helices. Here weshow its similarity with the Escherichia coli elongation factor,with L-arabinose binding protein, with haloalkane dehalogenaseand with adenylate kinase. The profilin–ß-actincontains an antiparallel ß-pleated sheet with -helicaltermini. Its similarities to lipase, fructose disphosphataseand ß-lactamase are displayed.  相似文献   

6.
The conformational properties of protein fragments have beenwidely studied as models of the earliest initiation events inprotein folding. While native-like -helices and ß-turnshave been identified, less is known about the factors that underlyß-sheet formation, in particular ß-hairpins,where considerably greater long-range order is required. TheN-terminal 20 residue sequence of native ferredoxin I (fromthe blue-green alga Aphanothece sacrum ) forms a ß-hairpinin the native structure and has been studied in isolation byNMR and CD spectroscopy. Local native-like interactions aloneare unable to stabilize significantly a folded conformationof the 20-residue fragment in purely aqueous solution. However,we show that the addition of low levels of organic co-solventspromotes formation of native-like ß-hairpin structure.The results suggest an intrinsic propensity of the peptide toform a native-like ß-hairpin structure, and that theorganic co-solvent acts in lieu of the stabilizing influenceof tertiary interactions (probably hydrophobic contacts) whichoccur in the folding of the complete ferredoxin sequence. Thestructure of the isolated hairpin, including the native-likeregister of interstrand hydrogen bonding interactions, appearsto be determined entirely by the amino acid sequence. The solventconditions employed have enabled this intrinsic property tobe established.  相似文献   

7.
The role of electrostatic interactions between the charges carriedby the titratable groups in the different aggregates of constitutivephycocyanin from Fremyella diplosiphon has been studied by usinga simple theoretical approach based on the modified Tanford- Kirkwood model. The electrostatic potential has also beencalculated by means of a numerical solution of the linearizedPoisson - Boltzmann equations using the finite-differences technique.The pH dependence of the electrostatic contribution to freeenergy suggests an electrostatic stabilization of the - andß-subunits as well as of the (ß)-monomerover a broad pH interval. The charge distributions in the individual-and ß-subunlts produce electrostatic complementarityand promote the assembly of the subunits to the (ß)-monomer,as well as of the monomers to the larger trimeric and hexamericaggregates. Trimer -trimer electrostatic interactions exhibitstrong pH dependence, predicting an association/dissociationequilibrium with a midpoint at pH 6. The electrostatic trimer-trimerinteractions correspond to the steric fit, suggesting that electrostaticinteractions may initially help to orient the trimers duringaggregation. The distribution of the electrostatic potentialof the monomers and of the higher aggregates suggests that itplays an important role also in phycocyanin-linker protein binding.  相似文献   

8.
Hie structure of E.coli soluble inorganic pyrophosphatase hasbeen refined at 2.7 resolution to an R-factor of 20.9. Theoverall fold of the molecule is essentially the same as yeastpyrophosphatase, except that yeast pyrophosphatase is longerat both the N- and C-termini. Escherichia coli pyrophosphataseis a mixed +ß protein with a complicated topology.The active site cavity, which is also very similar to the yeastenzyme, is formed by seven ß-strands and an -helixand has a rather asymmetric distribution of charged residues.Our structure-based alignment extends and improves upon earliersequence alignment studies; it shows that probably no more than14, not 15–17 charged and polar residues are part of theconserved enzyme mechanism of pyrophosphatases. Six of theseconserved residues, at the bottom of the active site cavity,form a tight group centred on Asp70 and probably bind the twoessential Mg+ ions. The others, more spreadout and more positivelycharged, presumably bind substrate. Escherichia coli pyrophosphatasehas an extra aspartate residue in the active site cavity, whichmay explain why the two enzymes bind divalent cation differently.Based on the structure, we have identified a sequence motifthat seems to occur only in soluble inorganic pyrophosphatases.  相似文献   

9.
The parallel ß-barrel is a recurrent structural motiffound in a large variety of different enzymes belonging to thefamily of /ß-proteins. It has been shown previouslythat the hyperboloid can be considered as a scaffold describingthe parallel ß-barrel structure. To assess restraintson ß-strand twist imposed by a given scaffold geometry,the notion of scaffold twist, Ts, is introduced. From Ts, theß-strand twist (Twß) expected for a givenscaffold geometry can be derived and it is verified that thiscomputed twist can be used to identify ß-barrels characterizedby good hydrogen bonding. It is noted that Twß isonly slightly affected for ß-barrels differing inthe number (N) of ß-strands, suggesting that restraintson main-chain conformation of ß-strands are not likelyto account for the N = 8 invariability observed in natural parallelß-barrels thereby strengthening previous work rationalizingthis constancy.  相似文献   

10.
The crystal structure of xylose isomerase [E.C. 5.3.1.5 [EC] ] fromStreptomyces olivochromogenes has been determined to 3.0 Åresolution. The crystals belong to space group P22121 with unitcell parameters a = 98.7, b = 93.9, c = 87.7. The asymmetricunit contains half of a tetrameric molecule of 222 symmetry.The two-fold axis relating the two molecules in the asymmetricunit is close to where a crystallographic two-fold would beif the space group were 1222. This causes the diffraction patternto have strong 1222 pseudo-symmetry, so all data were collectedin this pseudo-space group. Since the sequence of this enzymehas not been reported, a polyalanine backbone has been fittedto the electron density. Xylose isomerase has two domains: theN-terminal domain is an eight-stranded /ß barrel of299 residues. The C-terminal domain is a large loop of 50 residueswhich is involved in inter-molecular contacts. Comparison ofxylose isomerase with the archetypical /ß barrel protein,triose phosphate isomerase, reveals that the proteins overlapbest when the third (ß) strand of xylose isomeraseis superimposed on the first (ß) strand of triosephosphate isomerase. This same overlap has also been found betweenthe muconate lactonising enzyme and triose phosphate isomerase[Goldman et al. (1987) J. Mol. Biol., in press].  相似文献   

11.
A protein designed de novo to fold into the Greek key jellyrollstructural motif has been studied. Theoretical analyses haveindicated that the designed sequence should adopt the ß-strandarrangement of the Greek key jellyroll rather than any otherarrangement. A synthetic gene was constructed and the proteinexpressed in Escherichia coli. Circular dichroism spectroscopyis consistent with the protein folding into the designed conformationand also suggests the presence of tertiary structure. Fluorescencespectroscopy showed the single tryptophan to be partially buried,while denaturation studies showed changes in fluorescence toprecede alterations in secondary structure.  相似文献   

12.
Recombinant porcine myoglobin has been produced in Escherichiacoli using the cII fusion expression system of Nagai and Th?gersen[Nature, 309, 810–812 (1984)]. After processing and reconstitutionwith haem, the protein is gel-electrophoretically and spectrophotometricallyindistinguishable from native pig myoglobin. Large crystalsof both native and recombinant porcine myoglobin were grownfrom 50 mM sodium phosphate, pH 7.1, 80% ammonium sulphate.The crystals belong to space group C2 (a = 156.9 ?, b = 42.0?, c = 92.2 ?, ß = 127.9?) and diffract to a nominal2.5 ? resolution. We plan to explore apomyoglobin as a bindingsurface in studies combining site-directed mutagenesis and X-rayanalysis. These experiments will be extended by studying thebinding of haem analogues to the mutant apoproteins.  相似文献   

13.
Protein farnesyltransferase (FPT) is a 97 000 Da heterodimericenzyme that catalyzes post-translational farnesylation of manycellular regulatory proteins including p21 Ras. To facilitatethe construction of site-directed mutants, a novel translationallycoupled, two-cistron Escherichia coli expression system forrat FPT has been developed. This expression system enabled yieldsof >5 mg of purified protein per liter of E.coli cultureto be obtained. The E.coli-derived FPT demonstrated an activitycomparable to that of protein isolated from other sources. Thereported expression system was used to construct three ß-subunitC-terminal truncation mutants, 5, 10 and 14, which were designedto eliminate a lattice interaction between the ß-subunitC-terminus of one molecule and the active site of a symmetry-relatedmolecule. Steady-state kinetic analyses of these mutants showedthat deletion up to 14 residues at the C-terminus did not reducethe value of kcat; however, Km values for both peptide and FPPincreased 2–3-fold. A new crystalline form of FPT was obtainedfor the 10 C-terminal mutant grown in the presence of the substrateanalogs acetyl-Cys-Val-Ile-Met-COOH peptide and -hydroxyfarnesylphosphonicacid. The crystals diffract to beyond 2.0 Å resolution.The refined structure clearly shows that both substrate analogsadopt extended conformations within the FPT active site cavity.  相似文献   

14.
In order to investigate how structural modifications interferewith protein stability, we modified a (ß)-unit inE.coli triosephosphate isomerase (TIM), a typical (ß)-barrelprotein, assuming that the pseudosymmetrical ß-barrelcan be divided into eight successive loop/ß-strand/loop/-helixmotifs. We replaced the eighth (ß)-unit of E.coliTIM with the corresponding chicken (ß)-unit. The substitution,involving the replacement of 10 of the 23 residues of this (ß)-unit, was evaluated first by modelling, then experimentally.Modelling by bomology suggests how the amino add replacementsmight be accommodated in the hybrid E.coli/chicken TIM (ETCM8CHI).Both natural and hybrid recombinant TIMs, overproduced in E.coli,were purified to homogeneity and characterized as to their stabilityand kinetics. Our kinetic studies show that the modificationperformed here leads to an active enzyme. The stability studiesindicate that the stability of ETIM8CHI is comparable to thatof the wild type TIM.  相似文献   

15.
In recent protein structure prediction research there has beena great deal of interest in using amino acid interaction preferences(e.g. contact potentials or potentials of mean force) to align(‘thread’) a protein sequence to a known structuralmotif. An important open question is whether a polynomial timealgorithm for finding the globally optimal threading is possible.We identify the two critical conditions governing this question:(i) variable-length gaps are admitted into the alignment, and(ii) interactions between amino acids from the sequence areadmitted into the score function. We prove that if both theseconditions are allowed then the protein threading decision problem(does there exist a threading with a score K?) is NP-complete(in the strong sense, i.e. is not merely a number problem) andthe related problem of finding the globally optimal proteinthreading is NP-hard. Therefore, no polynomial time algorithmis possible (unless P = NP). This result augments existing proofsthat the direct protein folding problem is NP-complete by providingthe corresponding proof for the ‘inverse’ proteinfolding problem. It provides a theoretical basis for understandingalgorithms currently in use and indicates that computationalstrategies from other NP-complete problems may be useful forpredictive algorithms.  相似文献   

16.
Within the BRIDGE T-project on lipases we investigate the structure-functionrelationships of the lipases from Bacillus subtilis and Pseudomonasaeruginosa. Construction of an overproducing Bacillus. strainallowed the purification of > 100 mg lipase from 30 l culturesupernatant. After testing a large variety of crystallizationconditions, the Bacillus lipase gave crystals of reasonablequality in PEG-4000 (38-45%), Na2SO4 and octyl-ß-glucosideat 22°C, pH 9.0. A 2.5 Å; dataset has been obtainedwhich is complete from 15 to 2.5 A resolution. P.aeruginosawild-type strain PAC1R was fermented using conditions of maximumlipase production. More than 90% of the lipase was cell boundand could be solubilized by treatment of the cells with TritonX-100. This permitted the purification of 50 mg lipase. So far,no crystals of sufficient quality were obtained. Comparisonof the model we built for the Pseudomonas lipase, on the basisof sequences and structures of various hydrolases which werefound to possess a common folding pattern (/ß hydrolasefold), with the X-ray structure of the P.glumae lipase revealedthat it is possible to correctly build the structure of thecore of a protein even in the absence of obvious sequence homologywith a protein of known 3-D structure.  相似文献   

17.
An analysis of the geometry and the orientation of metal ionsbound to histidine residues in proteins is presented. Cationsare found to lie in the imidazole plane along the lone pairon the nitrogen atom. Out of the two tautomeric forms of theimidazole ring, the NE2-protonated form is normally preferred.However, when bound to a metal ion the ND1-protonated form ispredominant and NE2 is the ligand atom. When the metal coordinationis through ND1, steric interactions shift the side chain torsionalangle, X2 from its preferred value of 90 or 270. The orientationof histidine residues is usually stabilized through hydrogenbonding; ND1-protonated form of a helical residue can form ahydrogen bond with the carbonyl oxygen atom in the precedingturn of the helix. A considerable number of ligands are foundin helices and ß-sheets. A helical residue hound toa heme group is usually found near the C-terminus of the helix.Two ligand groups four residues apart in a helix, or two residuesapart in a ß-strand are used in many proteins to bindmetal ions.  相似文献   

18.
Predictions of protein secondary structure using current methodsare often unrealistic, i.e. the predicted -helices or ß-strandsare too short. To improve the realism, various heuristic ‘filtering’or ‘smoothing’ methods are used. They are more orless intuitive and are based on ad hoc corrections. We presenta regularization method to obtain a realistic secondary structurefrom predicted propensities. It is based on the known dynamicprogramming algorithm and is quite objective. It can be usedwith any prediction method which yields propensities. The regularizedpredictions conserve well the overall prediction accuracy andimprove the ‘protein-likeness’ of the prediction.  相似文献   

19.
We have applied random mutagenesis over short contiguous residuetracts (‘windows’) within an active peptide (the-peptide of ß-galactosidase) such that all windowresidues are replaced simultaneously. A novel technique usingmixed synthetic oligonucleotides and selection against an EcoKrestrictionsite has allowed the construction of libraries of mutants fortwo separate windows, sites A and B. Mutant phenotypes can beeasily assessed in vivoby a complementation test, and panelsof mutants have been quantitatively tested in vivoThis allowedthe rapid probing of structural requirements for each site.The two windows yielded markedly disparate results. Site B wasmuch less stringent in its sequence requirements for significantfunction than Site A, and mutants with improved function wereisolated at Site B alone. In addition, one Site B mutant withwild-type levels of activity showed enhanced stability to heator a protein denaturant. We propose that short tracts with thecharacteristics of Site B constitute ‘secondary’interaction sites which are more tolerant of sequence diversity.Random manipulation of such secondary sites is thus more likelyto yield up-mutations for standard or altered environments.Window mutagenesis can in principle be applied to any protein-proteinor protein-Ugand interaction.  相似文献   

20.
The Sulfolobus solfataricus, strain MT4, ß-glycosidase(Ssßgly) is a thermophilic member of glycohydrolasefamily 1. To identify active-site residues, glutamic acids 206and 387 have been changed to isosteric glutamine by site-directedmutagenesis. Mutant proteins have been purified to homogeneityusing the Schistosoma japonicum glutathione S-transferase (GST)fusion system. The proteolytic cleavage of the chimeric proteinwith thrombin was only obtainable after the introduction ofa molecular spacer between the GST and the Ssß-glydomains. The Glu387 Gin mutant showed no detectable activity,as expected for the residue acting as the nucleophile of thereaction. The Glu206 Gin mutant showed 10- and 60-fold reducedactivities on aryl-galacto and aryl-glucosides, respectively,when compared with the wild type. Moreover, a significant Kmdecrease with plo-nitrophenyl-ß-D-glucoside was observed.The residual activity of the Glu206 Gln mutant lost the typicalpH dependence shown by the wild type. These data suggest thatGlu206 acts as the general acid/base catalyst in the hydrolysisreaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号