共查询到20条相似文献,搜索用时 0 毫秒
1.
Xinyi Pang Xiaoye Song Minjie Chen Shuhua Tian Zhaoxin Lu Jing Sun Xiangfei Li Yingjian Lu Hyun-Gyun Yuk 《Comprehensive Reviews in Food Science and Food Safety》2022,21(2):1657-1676
Most foodborne pathogens have biofilm-forming capacity and prefer to grow in the form of biofilms. Presence of biofilms on food contact surfaces can lead to persistence of pathogens and the recurrent cross-contamination of food products, resulting in serious problems associated with food safety and economic losses. Resistance of biofilm cells to conventional sanitizers urges the development of natural alternatives to effectively inhibit biofilm formation and eradicate preformed biofilms. Lactic acid bacteria (LAB) produce bacteriocins which are ribosomally synthesized antimicrobial peptides, providing a great source of nature antimicrobials with the advantages of green and safe properties. Studies on biofilm control by newly identified bacteriocins are increasing, targeting primarily onListeria monocytogenes, Staphylococcus aureus, Salmonella, and Escherichia coli. This review systematically complies and assesses the antibiofilm property of LAB bacteriocins in controlling foodborne bacterial-biofilms on food contact surfaces. The bacteriocin-producing LAB genera/species, test method (inhibition and eradication), activity spectrum and surfaces are discussed, and the antibiofilm mechanisms are also argued. The findings indicate that bacteriocins can effectively inhibit biofilm formation in a dose-dependent manner, but are difficult to disrupt preformed biofilms. Synergistic combination with other antimicrobials, incorporation in nanoconjugates and implementation of bioengineering can help to strengthen their antibiofilm activity. This review provides an overview of the potential and application of LAB bacteriocins in combating bacterial biofilms in food processing environments, assisting in the development and widespread use of bacteriocin as a promising antibiofilm-agent in food industries. 相似文献
2.
The effect of lactic acid bacteria (LAB) strains on tyramine (TYR) and also other biogenic amines (BA) production by eight common food-borne pathogen (FBP) in tyrosine decarboxylase broth (TDB) was investigated by using a rapid HPLC method. Significant differences were observed among the FBP strains in ammonia (AMN) and BA production apart from tryptamine, histamine (HIS) and spermine formation (p < 0.05). Salmonella paratyphi A was characterised as the main amine producer. LAB had an important synergetic role in some BA production by food-borne pathogenic bacteria, although the effect of some LAB strains on BA production was strain-dependent. Lactococcus spp. and Streptococcus spp. resulted in significantly higher TYR accumulation by Aeromonas hydrophila and Enterococcus faecalis in TDB. The presence of Lactococcus and/or Lactobacillus in TDB significantly increased HIS production by A. hydrophila, Escherichia coli, Ent. faecalis, Klebsiella pneumoniae and Pseudomonas aeruginosa, whereas HIS accumulation was significantly reduced by Staphylococcus aureus, S. paratyphi A and Listeria monocytogenes. 相似文献
3.
4.
Fatih Özogul 《International Journal of Food Science & Technology》2011,46(3):478-484
The influences of lactic acid bacteria (LAB) on biogenic amines formation by foodborne pathogens (FBP) were investigated. Biogenic amines production by single and mix cultures was tested in histidine decarboxylase broth. All of the mix cultures (LAB with FBP) inhibited significantly (P < 0.05) the ammonia accumulation except for Escherichia coli with Lactococcus lactic subsp. lactic and Lactobacillus plantarum. Although LAB with most of the pathogen showed considerably stimulation effects on putrescine, cadaverine, spermine, 2‐phenylethylamine, histamine (HIS), tyramine, trimethylamine, dopamine and agmatine (AGM), some of the LAB with pathogens showed poor inhibition effect on different amines formation. HIS production by Klebiella pneumonia was 0.16 mg L?1, whereas HIS value in presence of Lb. plantarum increased to 30.92 mg L?1. Consequently, LAB inhibition of the ammonium production by FBP is favourable, while the stimulation effects of LAB on biogenic amines formation by FBPs are not desirable for food industry. 相似文献
5.
乳酸菌作为益生菌中的一个类群,被广泛应用于食品、医药以及化妆品行业。硒,作为人体必需的微量元素之一,在人体新陈代谢及免疫调节方面起到至关重要的作用。近年来,富硒乳酸菌因为其突出的抗氧化性、抗炎症、抗癌活性以及可以将无机硒转化成有利于人体吸收的有机硒而备受关注。然而,乳酸菌对于硒的代谢途径还有待进一步深入研究;同时,对于富硒益生菌及其发酵食品的毒性及副作用也需要更为全面的测试与评估。本文从硒元素的价态、硒对于乳酸菌生长的影响、乳酸菌对硒的有机转化、富硒乳酸菌的生物活性以及富硒功能食品这五个方面对其进行综述。 相似文献
6.
乳酸菌在青方腐乳中的应用研究 总被引:1,自引:0,他引:1
对从青方腐乳中分离的植物乳杆菌(Lactobacillus plantarum)、短小奇异菌(Atopobium parvulus)和片球菌(Pediococcus)在青方腐乳中的应用进行了研究。结果表明,这3株乳酸菌对青方腐乳的成熟和风味均有一定的促进作用,其中,片球菌对青方腐乳风味的作用效果最好,改变了腐乳中游离氨基酸的含量和呈味特点,并促进大豆蛋白质的水解,降低了腐乳的硬度、坚实性、粘度和黏附性,使腐乳的感官品质得到改善,是改进青方腐乳风味的协同菌株。 相似文献
7.
8.
9.
10.
乳酸菌是发酵产乳酸的一类革兰氏阳性菌,是大曲中的主要微生物菌系,对大曲中酯的形成是有利的,但在有些香型白酒(如清香、浓香型白酒)酿造中要控制或降低乳酸菌的作用.该文介绍了白酒生产中乳酸菌的分布,乳酸菌所产主要代谢产物的代谢途径及其对白酒的影响. 相似文献
11.
《Journal of the Institute of Brewing》2017,123(4):497-505
Acidified wort produced biologically using lactic acid bacteria (LAB) has application during sour beer production and in breweries adhering to the German purity law (Reinheitsgebot ). LAB cultures, however, suffer from end product inhibition and low pH, leading to inefficient lactic acid (LA) yields. Three brewing‐relevant LAB (Pediococcus acidilactici AB39, Lactobacillus amylovorus FST2.11 and Lactobacillus plantarum FST1.7) were examined during batch fermentation of wort possessing increasing buffering capacities (BC). Bacterial growth was progressively impaired when exposed to higher LA concentrations, ceasing in the pH range of 2.9–3.4. The proteolytic rest (50°C) during mashing was found to be a major factor improving the BC of wort. Both a longer mashing profile and the addition of an external protease increased the BC (1.21 and 1.24, respectively) compared with a control wort (1.18), and a positive, linear correlation (R 2 = 0.957) between free amino nitrogen and BC was established. Higher levels of BC led to significant greater LA concentration (up to +24%) after 48 h of fermentation, reaching a maximal value of 11.3 g/L. Even higher LA (maximum 12.8 g/L) could be obtained when external buffers were added to wort, while depletion of micronutrient(s) (monosaccharides, amino acids and/or other unidentified compounds) was suggested as the cause of LAB growth cessation. Overall, a significant improvement in LA production during batch fermentation of wort is possible when BC is improved through mashing and/or inclusion of additives (protease and/or external buffers), with further potential for optimization when strain‐dependent nutritional requirements, e.g. sugar and amino acids, are considered. Copyright © 2017 The Institute of Brewing & Distilling 相似文献
12.
浅谈乳酸菌在黄酒生产中的作用 总被引:1,自引:1,他引:0
为了全面地了解乳酸茵兼在黄酒生产全过程中的作用,介绍了黄酒米浆水中乳酸茵的应用、黄酒深层酿造兼氧浸米中乳酸菌的作用和乳酸菌在黄酒发酵过程中的作用,同时也介绍了乳酸茵代谢产物乳酸和乳酸乙酯在黄酒中的含量和作用。 相似文献
13.
Ethyl carbamate (EC) is a carcinogenic compound derived from the spontaneous reaction of ethanol with urea or citrulline in Chinese rice wine. Polymerase chain reaction–denaturing gradient gel electrophoresis showed that five species, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus brevis, Lactococcus lactis and Lactobacillus coryniformis were the most abundant bacteria in the Chinese rice wine production process. Five strains belonging to these species can degrade arginine primarily in the exponential growth phase and accumulate citrulline in MRS‐Arg medium. In addition, an L. brevis strain was shown to be capable of assimilating citrulline, indicating the potential of this strain suggesting a potential route to reduce citrulline content and ethyl carbamate formation in Chinese rice wine fermentation. Copyright © 2018 The Institute of Brewing & Distilling 相似文献
14.
15.
利用乳酸菌和酵母菌的共生作用,对牛乳进行了混合菌种的发酵研究。分析了共生作用对产品pH值、滴定酸度、乙醇含量和α-氨基酸态氮的影响。研究结果表明,乳酸菌的加入不仅可以提高酵母菌的生长速度,而且可以提高产品的风味,奶啤的酒精含量相对啤酒较低,是酒精度较低的健康型饮料。 相似文献
16.
H. Kimoto-Nira N. Moriya S. Hayakawa K. Kuramasu H. Ohmori S. Yamasaki M. Ogawa 《Journal of dairy science》2017,100(7):5936-5944
It has recently been reported that the rare sugar d-allulose has beneficial effects, including the suppression of postprandial blood glucose elevation in humans, and can be substituted for sucrose as a low-calorie food ingredient. To examine the applications of d-allulose in the dairy industry, we investigated the effects of d-allulose on the acid production of 8 strains of yogurt starter (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) and 4 strains of lactococci, including potential probiotic candidates derived from dairy products. Acid production by 2 L. delbrueckii ssp. bulgaricus yogurt starter strains in milk was suppressed by d-allulose, but this phenomenon was also observed in some strains with another sugar (xylose), a sugar alcohol (sorbitol), or both. In contrast, among the dairy probiotic candidates, Lactococcus lactis H61, which has beneficial effects for human skin when drunk as part of fermented milk, was the only strain that showed suppression of acid production in the presence of d-allulose. Strain H61 did not metabolize d-allulose. We did not observe suppression of acid production by strain H61 with the addition of xylose or sorbitol, and xylose and sorbitol were not metabolized by strain H61. The acid production of strain H61 after culture in a constituted medium (tryptone–yeast extract–glucose broth) was also suppressed with the addition of d-allulose, but growth efficiency and sugar fermentation style were not altered. Probiotic activities—such as the angiotensin-converting enzyme inhibitory activity of H61-fermented milk and the superoxide dismutase activity of H61 cells grown in tryptone–yeast extract–glucose broth—were not affected by d-allulose. d-Allulose may suppress acid production in certain lactic acid bacteria without altering their probiotic activity. It may be useful for developing new probiotic dairy products from probiotic strains such as Lactococcus lactis H61. 相似文献
17.
18.
19.
20.
乳酸菌是一类宝贵的微生物资源。本文介绍了乳酸菌的免疫、抗氧化、降胆固醇、抗高血压、改善风味、抗菌等功能及其应用技术,为进一步的开发利用提供参考。 相似文献