首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Indoor air pollution from the combustion of traditional biomass fuels (wood, cow dung, and crop wastes) is a significant public health problem predominantly for poor populations in many developing countries. It is particularly problematic for the women who are normally responsible for food preparation and cooking, and for infants/young children who spend time around their mothers near the cooking area. Airborne particulate matter (PM) samples were collected from cooking and living areas in homes in a rural area of Bangladesh to investigate the impact of fuel use, kitchen configurations, and ventilation on indoor air quality and to apportion the source contributions of the measured trace metals and BC concentrations. Lower PM concentrations were observed when liquefied petroleum gas (LPG) was used for cooking. PM concentrations varied significantly depending on the position of kitchen, fuel use and ventilation rates. From reconstructed mass (RCM) calculations, it was found that the major constituent of the PM was carbonaceous matter. Soil and smoke were identified as components from elemental composition data. It was also found that some kitchen configurations have lower PM concentrations than others even with the use of low-grade biomass fuels. Adoption of these kitchen configurations would be a cost-effective approach in reducing exposures from cooking in these rural areas.  相似文献   

2.
Low birthweight contributes to as many as 60% of all neonatal deaths; exposure during pregnancy to household air pollution has been implicated as a risk factor. Between 2011 and 2013, we measured personal exposures to carbon monoxide (CO) and fine particulate matter (PM2.5) in 239 pregnant women in Dar es Salaam, Tanzania. CO and PM2.5 exposures during pregnancy were moderately high (geometric means 2.0 ppm and 40.5 μg/m3); 87% of PM2.5 measurements exceeded WHO air quality guidelines. Median and high (75th centile) CO exposures were increased for those cooking with charcoal and kerosene versus kerosene alone in quantile regression. High PM2.5 exposures were increased with charcoal use. Outdoor cooking reduced median PM2.5 exposures. For PM2.5, we observed a 0.15 kg reduction in birthweight per interquartile increase in exposure (23.0 μg/m3) in multivariable linear regression; this finding was of borderline statistical significance (95% confidence interval 0.30, 0.00 kg; P = 0.05). PM2.5 was not significantly associated with birth length or head circumference nor were CO exposures associated with newborn anthropometrics. Our findings contribute to the evidence that exposure to household air pollution, and specifically fine particulate matter, may adversely affect birthweight.  相似文献   

3.
Exposure to particulate matter (PM2.5) from the burning of biomass is associated with increased risk of respiratory disease. In Dhaka, Bangladesh, households that do not burn biomass often still experience high concentrations of PM2.5, but the sources remain unexplained. We characterized the diurnal variation in the concentrations of PM2.5 in 257 households and compared the risk of experiencing high PM2.5 concentrations in biomass and non‐biomass users. Indoor PM2.5 concentrations were estimated every minute over 24 h once a month from April 2009 through April 2010. We found that households that used gas or electricity experienced PM2.5 concentrations exceeding 1000 μg/m3 for a mean of 35 min within a 24‐h period compared with 66 min in biomass‐burning households. In both households that used biomass and those that had no obvious source of particulate matter, the probability of PM2.5 exceeding 1000 μg/m3 were highest during distinct morning, afternoon, and evening periods. In such densely populated settings, indoor pollution in clean fuel households may be determined by biomass used by neighbors, with the highest risk of exposure occurring during cooking periods. Community interventions to reduce biomass use may reduce exposure to high concentrations of PM2.5 in both biomass and non‐biomass using households.  相似文献   

4.
The impact of an improved wood burning stove (Patsari) in reducing personal exposures and indoor concentrations of particulate matter (PM(2.5)) and carbon monoxide (CO) was evaluated in 60 homes in a rural community of Michoacan, Mexico. Average PM(2.5) 24-h personal exposure was 0.29 mg/m(3) and mean 48-h kitchen concentration was 1.269 mg/m(3) for participating women using the traditional open fire (fogon). If these concentrations are typical of rural conditions in Mexico, a large fraction of the population is chronically exposed to levels of pollution far higher than ambient concentrations found by the Mexican government to be harmful to human health. Installation of an improved Patsari stove in these homes resulted in 74% reduction in median 48-h PM(2.5) concentrations in kitchens and 35% reduction in median 24-h PM(2.5) personal exposures. Corresponding reductions in CO were 77% and 78% for median 48-h kitchen concentrations and median 24-h personal exposures, respectively. The relationship between reductions in median kitchen concentrations and reductions in median personal exposures not only changed for different pollutants, but also differed between traditional and improved stove type, and by stove adoption category. If these reductions are typical, significant bias in the relationship between reductions in particle concentrations and reductions in health impacts may result, if reductions in kitchen concentrations are used as a proxy for personal exposure reductions when evaluating stove interventions. In addition, personal exposure reductions for CO may not reflect similar reductions for PM(2.5). This implies that PM(2.5) personal exposure measurements should be collected or indoor measurements should be combined with better time-activity estimates, which would more accurately reflect the contributions of indoor concentrations to personal exposures. PRACTICAL IMPLICATIONS: Installation of improved cookstoves may result in significant reductions in indoor concentrations of carbon monoxide and fine particulate matter (PM(2.5)), with concurrent but lower reductions in personal exposures. Significant errors may result if reductions in kitchen concentrations are used as a proxy for personal exposure reductions when evaluating stove interventions in epidemiological investigations. Similarly, time microenvironment activity models in these rural homes do not provide robust estimates of individual exposures due to the large spatial heterogeneity in pollutant concentrations and the lack of resolution of time activity diaries to capture movement through these microenvironments.  相似文献   

5.
Indoor air pollution (IAP) from domestic biomass combustion is an important health risk factor, yet direct measurements of personal IAP exposure are scarce. We measured 24-h integrated gravimetric exposure to particles < 2.5 μm in aerodynamic diameter (particulate matter, PM?.?) in 280 adult women and 240 children in rural Yunnan, China. We also measured indoor PM?.? concentrations in a random sample of 44 kitchens. The geometric mean winter PM?.? exposure among adult women was twice that of summer exposure [117 μg/m3 (95% CI: 107, 128) vs. 55 μg/m3 (95% CI: 49, 62)]. Children's geometric mean exposure in summer was 53 μg/m3 (95% CI: 46, 61). Indoor PM?.? concentrations were moderately correlated with women's personal exposure (r=0.58), but not for children. Ventilation during cooking, cookstove maintenance, and kitchen structure were significant predictors of personal PM?.? exposure among women primarily cooking with biomass. These findings can be used to develop exposure assessment models for future epidemiologic research and inform interventions and policies aimed at reducing IAP exposure. PRACTICAL IMPLICATIONS: Our results suggest that reducing overall PM pollution exposure in this population may be best achieved by reducing winter exposure. Behavioral interventions such as increasing ventilation during cooking or encouraging stove cleaning and maintenance may help achieve these reductions.  相似文献   

6.
Indoor air concentrations of volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide (NO2), and dust particles were measured for 49 biomass and 46 fossil fuel users in urban slums of Dhaka, Bangladesh. The health impacts of these pollutants were assessed on 65 and 51 children under five years old from families who use biomass and fossil fuel as main source of energy, respectively. Mean concentrations of CO were found to be significantly higher in biomass fuel users (P = 0.010), while geometric mean concentrations of benzene, xylene, toluene, hexane, total VOCs, and NO2 were significantly higher (P < 0.01) in the fossil fuel users. Symptoms such as redness of eyes, itching of skin, nasal discharge, cough, shortness of breath, chest tightness, wheezing, or whistling chest were found to be associated with the choice of biomass fuel, with the odds ratio ranging from 4.0 to 6.3. No significant association of use of biomass fuel with respiratory diseases, eczema, diarrhea, or viral fever was observed after adjustment for potential confounders. These results suggest a significant association between the biomass fuel-using population and respiratory symptoms. These symptoms may not be due to the pollutants only, as some other underlying causes may be present. PRACTICAL IMPLICATIONS: The health of children under five years old in Bangladesh, especially those living in poor socioeconomic conditions, is considered to be worsening because of indoor air pollution. It is commonly suggested that biomass fuel should be replaced by fossil fuel, as pollution levels are believed to be higher with biomass fuel. Our findings, however, suggest that pollution can be higher with fossil fuels, and indicate that a switch in fuel from biomass to fossil does not necessarily improve the children's health. Awareness programs should therefore be undertaken to avoid the unnecessary use of gas. Clean fuels and clean stoves should also be ensured to reduce emissions of indoor air pollutants.  相似文献   

7.
Indoor air pollution (IAP) from biomass fuels contains high concentrations of health damaging pollutants and is associated with an increased risk of childhood pneumonia. We aimed to design an exposure measurement component for a matched case-control study of IAP as a risk factor for pneumonia and severe pneumonia in infants and children in The Gambia. We conducted co-located simultaneous area measurement of carbon monoxide (CO) and particles with aerodynamic diameter <2.5 microm (PM(2.5)) in 13 households for 48 h each. CO was measured using a passive integrated monitor and PM(2.5) using a continuous monitor. In three of the 13 households, we also measured continuous PM(2.5) concentration for 2 weeks in the cooking, sleeping, and playing areas. We used gravimetric PM(2.5) samples as the reference to correct the continuous PM(2.5) for instrument measurement error. Forty-eight hour CO and PM(2.5) concentrations in the cooking area had a correlation coefficient of 0.80. Average 48-h CO and PM(2.5) concentrations in the cooking area were 3.8 +/- 3.9 ppm and 361 +/- 312 microg/m3, respectively. The average 48-h CO exposure was 1.5 +/- 1.6 ppm for children and 2.4 +/- 1.9 ppm for mothers. PM(2.5) exposure was an estimated 219 microg/m3 for children and 275 microg/m3 for their mothers. The continuous PM(2.5) concentration had peaks in all households representing the morning, midday, and evening cooking periods, with the largest peak corresponding to midday. The results are used to provide specific recommendations for measuring the exposure of infants and children in an epidemiological study. PRACTICAL IMPLICATIONS: Measuring personal particulate matter (PM) exposure of young children in epidemiological studies is hindered by the absence of small personal monitors. Simultaneous measurement of PM and carbon monoxide suggests that a combination of methods may be needed for measuring children's PM exposure in areas where household biomass combustion is the primary source of indoor air pollution. Children's PM exposure in biomass burning homes in The Gambia is substantially higher than concentrations in the world's most polluted cities.  相似文献   

8.
9.
Rural areas of developing countries are particularly reliant on biomass for cooking and heating. Women and children in these areas are often exposed to high levels of pollutants from biomass combustion that is associated with a range of respiratory symptoms. Domestic exposure to carbon monoxide (CO) and respirable particles (RSPs) in association with respiratory symptoms among women and children in Zimbabwe was investigated in 48 households. Health status and household characteristics were also recorded. In this study, indoor levels of CO and RSPs exceeded World Health Organization (WHO) air quality guidelines in over 95% of kitchens. The level of indoor air pollutants was associated with the area of kitchen windows and the length of cooking time combined with the level of fire combustion. Prevalence of respiratory symptoms was 94% for women and 77% for children. In addition, women reporting respiratory symptoms were exposed to higher levels of RSPs when compared with those reporting no respiratory symptoms. The study results indicated that levels of indoor air pollutants in rural Zimbabwe may contribute to respiratory symptoms in both women and children. PRACTICAL IMPLICATIONS: Levels of respirable particles and carbon monoxide in kitchens in rural Zimbabwe are unacceptably high and measures to reduce levels should be undertaken. Based on the study findings, recommendations for increasing the area of kitchen windows may be considered as a practical method of reducing indoor air pollutants in rural Zimbabwe.  相似文献   

10.
Indoor air quality (IAQ) parameters in 73 primary classrooms in Porto were examined for the purpose of assessing levels of volatile organic compounds (VOCs), aldehydes, particulate matter, ventilation rates and bioaerosols within and between schools, and potential sources. Levels of VOCs, aldehydes, PM2.5, PM10, bacteria and fungi, carbon dioxide (CO2), carbon monoxide, temperature and relative humidity were measured indoors and outdoors and a walkthrough survey was performed concurrently. Ventilation rates were derived from CO2 and occupancy data. Concentrations of CO2 exceeding 1000 ppm were often encountered, indicating poor ventilation. Most VOCs had low concentrations (median of individual species <5 μg/m3) and were below the respective WHO guidelines. Concentrations of particulate matter and culturable bacteria were frequently higher than guidelines/reference values. The variability of VOCs, aldehydes, bioaerosol concentrations, and CO2 levels between schools exceeded the variability within schools. These findings indicate that IAQ problems may persist in classrooms where pollutant sources exist and classrooms are poorly ventilated; source control strategies (related to building location, occupant behavior, maintenance/cleaning activities) are deemed to be the most reliable for the prevention of adverse health consequences in children in schools.  相似文献   

11.
12.
Exposure to fine particulate matter (PM2.5) is a major contributor to the global human disease burden. The indoor environment is of particular importance when considering the health effects associated with PM2.5 exposures because people spend the majority of their time indoors and PM2.5 exposures per unit mass emitted indoors are two to three orders of magnitude larger than exposures to outdoor emissions. Variability in indoor PM2.5 intake fraction (iFin,total), which is defined as the integrated cumulative intake of PM2.5 per unit of emission, is driven by a combination of building‐specific, human‐specific, and pollutant‐specific factors. Due to a limited availability of data characterizing these factors, however, indoor emissions and intake of PM2.5 are not commonly considered when evaluating the environmental performance of product life cycles. With the aim of addressing this barrier, a literature review was conducted and data characterizing factors influencing iFin,total were compiled. In addition to providing data for the calculation of iFin,total in various indoor environments and for a range of geographic regions, this paper discusses remaining limitations to the incorporation of PM2.5‐derived health impacts into life cycle assessments and makes recommendations regarding future research.  相似文献   

13.
The paper presents the results of a study conducted into the relationship between dwelling characteristics and occupant activities with the respiratory health of resident women and children in Lao People's Democratic Republic (PDR). Lao is one of the least developed countries in south-east Asia with poor life expectancies and mortality rates. The study, commissioned by the World Health Organisation, included questionnaires delivered to residents of 356 dwellings in nine Districts in Lao PDR over a five month period (December 2005-April 2006), with the aim of identifying the association between respiratory health and indoor air pollution, in particular exposures related to indoor biomass burning. Adjusted odds ratios were calculated for each health outcome separately using binary logistic regression. After adjusting for age, a wide range of symptoms of respiratory illness in women and children aged 1-4 years were positively associated with a range of indoor exposures related to indoor cooking, including exposure to a fire and location of the cooking place. Among women, “dust always inside the house” and smoking were also identified as strong risk factors for respiratory illness. Other strong risk factors for children, after adjusting for age and gender, included dust and drying clothes inside. This analysis confirms the role of indoor air pollution in the burden of disease among women and children in Lao PDR.  相似文献   

14.

Background

The 2006 World Health Organization Air Quality Guidelines recommend using particulate matter having a diameter of under 2.5 micra (PM2.5) rather than PM10 as an indicator of air particle concentration, a pattern followed by new European directives. Nevertheless, few studies have analysed this new indicator's impact at a European level on daily mortality among a high-risk group, such as persons aged over 75 years.

Objective

This study sought to analyse and quantify the effect of PM2.5 on daily cause-specific mortality among the over-75 age group in the city of Madrid.

Methods

Using Poisson regression with Generalized Additive Models (GAM), a longitudinal, ecological time-series study examined the following causes of death: all causes except accidents (International Classification of Diseases-9th revision (ICD 9): 1-799); circulatory causes (ICD 9: 390-459); and respiratory causes (ICD 9: 460-519). These were adjusted for other chemical, biotic and acoustic pollutants. Further control variables considered were: trend; seasonality; influenza epidemics; and autocorrelation between mortality series.

Results

A significant statistical association was detected between daily mean PM2.5 particle concentrations and all-cause mortality in the city of Madrid. This association was not in evidence for PM10 concentrations. The Relative Risks found for an increase of 25 µg/m3 in PM2.5 concentrations were as follows: all-cause mortality, 1.057 (1.025-1.088); circulatory-cause mortality, 1.088 (1.041-1.135); and respiratory-cause mortality, 1.122 (1.056-1.189). The Attributable Risks were 5.41%, 8.12% and 10.90% respectively. This effect was observed in the short term (lags 1-2).

Conclusion

Our results indicate a strong impact of PM2.5 concentrations on daily mortality among the over-75 age group in Madrid, and underscore the need for measures aimed at lowering the concentration levels of this primary air pollutant in large cities, particularly by reducing motor vehicle traffic, the main source of such pollutant emission in urban atmospheres.  相似文献   

15.
Indoor air pollution has been linked to adverse chronic obstructive pulmonary disease (COPD) health, but specific causative agents have not yet been identified. We evaluated the role of indoor endotoxin exposure upon respiratory health in former smokers with COPD. Eighty‐four adults with moderate to severe COPD were followed longitudinally and indoor air and dust samples collected at baseline, 3 and 6 months. Respiratory outcomes were repeatedly assessed at each time point. The associations between endotoxin exposure in air and settled dust and health outcomes were explored using generalizing estimating equations in multivariate models accounting for confounders. Dust endotoxin concentrations in the main living area were highest in spring and lowest in fall, while airborne endotoxins remained steady across seasons. Airborne and dust endotoxin concentrations were weakly correlated with one another (rs = +0.24, P = 0.005). Endotoxin concentrations were not significantly associated with respiratory symptoms, rescue medication use, quality of life, or severe exacerbations. In vitro whole‐blood assays of the pro‐inflammatory capacity of PM10 filters with and without endotoxin depletion demonstrated that the endotoxin component of indoor air pollution was not the primary trigger for interleukin‐1β release. Our findings support that endotoxin is not the major driver in the adverse effects of indoor PM upon COPD morbidity.  相似文献   

16.
17.
Household fine particulate matter (PM2.5) pollution greatly impacts residents' health. To explore the current national situation of household PM2.5 pollution in China, a study was conducted based on literature published from 1998 to 2018. After extracting data from the literature in conformity with the requirements, the nationwide household-weighted mean concentration of household PM2.5 (HPL) was calculated. Subgroup analyses of spatial, geographic, and temporal differences were also done. The estimated overall HPL in China was 132.2 ± 117.7 μg/m3. HPL in the rural area (164.3 ± 104.5 μg/m3) was higher than that in the urban area (123.9 ± 122.3 μg/m3). For HPLs of indoor sampling sites, the kitchen was the highest, followed by the bedroom and living room. There were significant differences of geographic distributions. The HPLs in the South were higher than the North in four seasons. The inhaled dose of household PM2.5 among school-age children differed from provinces with the highest dose up to 5.9 μg/(kg·d). Countermeasures should be carried out to reduce indoor pollution and safeguard health urgently.  相似文献   

18.
Inuit infants have extremely high rates of lower respiratory tract infection (LRTI), but the causes for this are unclear. The aims of this study were to assess, in young Inuit children in Baffin Region, Nunavut, the feasibility of an epidemiologic study of the association between indoor air quality (IAQ) and respiratory health; to obtain data on IAQ in their housing; and to identify and classify risk factors for LRTI. Twenty houses in Cape Dorset, Nunavut with children below 2 years of age, were evaluated using a structured housing inspection and measurement of IAQ parameters, and a respiratory health questionnaire was administered. Twenty-five percent of the children had, at some time, been hospitalized for chest illness. Houses were very small, and had a median of six occupants per house. Forty-one percent of the houses had a calculated natural air change rate <0.35 air changes per hour. NO(2) concentrations were within the acceptable range. Smokers were present in at least 90% of the households, and nicotine concentrations exceeded 1.5 microg/m(3) in 25% of the dwellings. Particulates were found to be correlated closely with nicotine but not with NO(2) concentrations, suggesting that their main source was cigarette smoking rather than leakage from furnaces. Mattress fungal levels were markedly increased, although building fungal concentrations were low. Dust-mites were virtually non-existent. Potential risk factors related to IAQ for viral LRTI in Inuit infants were observed in this study, including reduced air exchange and environmental tobacco smoke exposure. Severe lower respiratory tract infection is common in Inuit infants. We found reduced air change rates and high occupancy levels in houses in Cape Dorset, which may increase the risk of respiratory infections. This suggests the measures to promote better ventilation or more housing may be beneficial. Further health benefits may be obtained by reducing bed sharing by infants and greater turnover of mattresses, which were found to have high levels of fungi.  相似文献   

19.
We investigated whether exposure to microbiome within the indoor environment is associated with risk of lower respiratory tract infections (LRTI) among children under 5 years of age. Electronic scientific repositories; PubMed, Scopus, Web of Science, GreenFILE, EMBASE, and Cochrane library were searched and screened through July 2019 for published reports for inclusion in the meta-analysis. Studies were eligible for inclusion if they reported an adjusted measure of risk for LRTI associated with IM exposure, including the relative risk (RR) or odds ratio (OR) and confidence interval (CI). The pooled OR was computed using the inverse of variance method for weighting. Sensitivity analysis was used to evaluate the effect of individual studies, while heterogeneity was evaluated by I2 statistics using RevMan 5.3. Seven studies were eligible for inclusion in our meta-analysis. Exposure to a higher concentration of IM was associated with an increased risk of LRTI [OR:1.20 (1.11, 1.33), P < .0001]. The risk was stronger with exposure to total fungal concentration [OR:1.27 (1.13, 1.44), P < .0001] than visible molds [OR:1.20 (1.07, 1.34, P = .001]. Under-five children exposed to higher IM concentration are likely at increased risk of LRTI. Interventions addressing IM exposure should be considered in the management of LRTI among under-five children.  相似文献   

20.
Household heating using wood stoves is common practice in many rural areas of the United States (US) and can lead to elevated concentrations of indoor fine particulate matter (PM2.5). We collected 6-day measures of indoor PM2.5 during the winter and evaluated household and stove-use characteristics in homes at three rural and diverse study sites. The median indoor PM2.5 concentration across all homes was 19 µg/m3, with higher concentrations in Alaska (median = 30, minimum = 4, maximum = 200, n = 10) and Navajo Nation homes (median = 29, minimum = 3, maximum = 105, n = 23) compared with Montana homes (median = 16, minimum = 2, maximum = 139, n = 59). Households that had not cleaned the chimney within the past year had 65% higher geometric mean PM2.5 compared to those with chimney cleaned within 6 months (95% confidence interval [CI]: −1, 170). Based on a novel wood stove grading method, homes with low-quality and medium-quality stoves had substantially higher PM2.5 compared to homes with higher-quality stoves (186% higher [95% CI: 32, 519] and 161% higher; [95% CI:27, 434], respectively). Our findings highlight the need for, and complex nature of, regionally appropriate interventions to reduce indoor air pollution in rural wood-burning regions. Higher-quality stoves and behavioral practices such as regular chimney cleaning may help improve indoor air quality in such homes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号