首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recognition of the fact that building materials are an important source of indoor radon, second only to soil, surface radon exhalation fluxes have been extensively measured from the samples of these materials. Based on this flux data, several researchers have attempted to predict the inhalation dose attributable to radon emitted from walls and ceilings made up of these materials. However, an important aspect not considered in this methodology is the enhancement of the radon flux from the wall or the ceiling constructed using the same building material. This enhancement occurs mainly because of the change in the radon diffusion process from the former to the latter configuration. To predict the true radon flux from the wall based on the flux data of building material samples, we now propose a semi-empirical model involving radon diffusion length and the physical dimensions of the samples as well as wall thickness as other input parameters. This model has been established by statistically fitting the ratio of the solution to radon diffusion equations for the cases of three-dimensional cuboidal shaped building materials (such as brick, concrete block) and one dimensional wall system to a simple mathematical function. The model predictions have been validated against the measurements made at a new construction site. This model provides an alternative tool (substitute to conventional 1-D model) to estimate radon flux from a wall without relying on 226Ra content, radon emanation factor and bulk density of the samples. Moreover, it may be very useful in the context of developing building codes for radon regulation in new buildings.  相似文献   

2.
Yibin Chen 《Indoor air》1993,3(1):51-56
This paper presents the results of indoor radon surveys in the Sichuan province of China. The indoor radon concentrations found using scintillation or the two-filter method, ranged from 1.0 Bqm?3 to 170.2 Bqm?3. The arithmetic mean concentrations of indoor radon and its progeny were 17.8 Bqm?3 and 10.8 Bqm?3 EER (2.9 m WL), respectively. A seasonal pattern of the maximum in winter and the minimum in summer was observed for radon and its progeny concentrations. The annual effective dose equivalent resulting from indoor and outdoor inhalation of radon progeny totalled 0.93 mSv. Of the 109 million people living in Sichuan, 3000-6800 may die annually from lung cancer induced by the inhalation of radon progeny.  相似文献   

3.
The main source of high radon concentration indoors is the exhalation of radon from the soil. In the western part of Germany, two interesting regions, “Eifel” and “Hunsrück”, are selected for these radon investigations. The first region is an area with silt and sandstone of low uranium content but with tectonic fractures caused by postvolcanic activity, whereas in the part of the “Hunsrück” under consideration, the uranium concentration in the ground formerly allowed the extraction of uranium ores. An electrostatic deposit of the first radon daughter (Polonium-218-ion) onto a surface barrier detector and the subsequent analysis of the measured alpha spectra enables the determination of the concentration of radon in dwellings, its diffusion through and its exhalation rate from the soil. A maximum indoor concentration of radon of 8 kBq★m?3 in a bedroom and approximately 35 kBq★m?3 in a cellar room were determined in a house built in 1976. The daily variation between the minimum and the maximum concentration indoors amounts to a factor of ten. In these regions the radon concentration outdoors varies between 20 and 150 Bq★m?3. The exhalation rates of radon from the soil are found to range from 0.002 to 1 Bq★m?2★S?1 The effects of sealing the ground slab with polyurethane and removing the air under the ground slab by suction will be presented.  相似文献   

4.
Abstract To investigate the effect of ventilation on indoor radon (222Rn), simultaneous measurements of radon concentrations and air change rates were made in 117 Danish naturally ventilated slab-on-grade houses built during the period 1984–1989. Radon measurements (based on CR-39 alpha-track detectors) and air change rate measurements (based on the perfluorocarbon tracer technique; PFT) were in the ranges 12–620 Bq m?3 and 0.16?0.96 h?1, respectively. Estimates of radon entry rates on the basis of such time-averaged results are presented and the associated uncertainty is discussed. It was found that differences in radon concentrations from one house to another are primarily caused by differences in radon entry rates whereas differences in air change rates are much less important (accounting for only 80,0% of the house-to-house variation). In spite of the large house-to-house variability of radon entry rates it was demonstrated, however, that natural ventilation does have a significant effect on the indoor radon concentration. Most importantly, it was found that the group of houses with an air change rate above the required level of 0.5 h?1 on average had an indoor radon concentration that was only 50% (0.5±0.1) of that of the group of houses with air change rates below 0.5 h?1. The reducing effect of increased natural ventilation on the indoor radon concentration was found to be due mainly to dilution of indoor air. No effect could be seen regarding reduced radon entry rates.  相似文献   

5.
We test whether airborne gamma ray spectrometer measurements can be used to estimate levels of radon hazard in the Oslofjord region of Norway. We compile 43,000 line kilometres of gamma ray spectrometer data from 8 airborne surveys covering 10,000 km2 and compare them with 6326 indoor radon measurements. We find a clear spatial correlation between areas with elevated concentrations of uranium daughters in the near surface of the ground and regions with high incidence of elevated radon concentrations in dwellings. This correlation permits cautious use of the airborne data in radon hazard evaluation where direct measurements of indoor radon concentrations are few or absent. In radon hazard evaluation there is a natural synergy between the mapping of radon in indoor air, bedrock and drift geology mapping and airborne gamma ray surveying. We produce radon hazard forecast maps for the Oslofjord region based on a spatial union of hazard indicators from all four of these data sources. Indication of elevated radon hazard in any one of the data sets leads to the classification of a region as having an elevated radon hazard potential. This approach is inclusive in nature and we find that the majority of actual radon hazards lie in the assumed elevated risk regions.  相似文献   

6.
Measurements were taken in new US residences to assess the extent to which ventilation and source control can mitigate formaldehyde exposure. Increasing ventilation consistently lowered indoor formaldehyde concentrations. However, at a reference air exchange rate of 0.35 h?1, increasing ventilation was up to 60% less effective than would be predicted if the emission rate were constant. This is consistent with formaldehyde emission rates decreasing as air concentrations increase, as observed in chamber studies. In contrast, measurements suggest acetaldehyde emission was independent of ventilation rate. To evaluate the effectiveness of source control, formaldehyde concentrations were measured in Leadership in Energy and Environmental Design (LEED)‐certified/Indoor airPLUS homes constructed with materials certified to have low emission rates of volatile organic compounds (VOC). At a reference air exchange rate of 0.35 h?1, and adjusting for home age, temperature and relative humidity, formaldehyde concentrations in homes built with low‐VOC materials were 42% lower on average than in reference new homes with conventional building materials. Without adjustment, concentrations were 27% lower in the low‐VOC homes. The mean and standard deviation of formaldehyde concentration was 33 μg/m3 and 22 μg/m3 for low‐VOC homes and 45 μg/m3 and 30 μg/m3 for conventional.  相似文献   

7.
An empirical statistical model is described for the use of indoor radon monitoring data as an indicator of the areal radon risk from soil and bedrock. The percentages of future homes expected to have radon concentrations exceeding the design level of 200 Bq/m3 unless constructed to provide protection against the entry of radon were assessed. The radon prognosis was made for different subareas, soil types and foundation types. This kind of report is used by the health and building authorities. In this study, 2689 indoor radon measurements were made in one of Finland's most radon-prone areas, consisting of eleven municipalities with a total area of 4600 km2 and a population of 186,000. Radon concentrations were seasonally adjusted. Data on the location, geology and construction of buildings were determined from maps and questionnaires. The measurements covered different kinds of geological units in the area. The radon risk is highest in the gravel-dominated subarea in an ice-marginal formation and lowest in the northern half of the area in buildings constructed on bedrock. In these two areas, the design level of 200 Bq/m3 would be exceeded in 99% and 39% of new houses with slab-on-grade.  相似文献   

8.
9.
Where indoor concentrations are high, radon entry into houses with basements is usually due primarily to the convective transport of soil gas through openings in the subsurface part of the building shell. The factors determining the rate of entry may conveniently be divided into those associated with the undisturbed soil and those associated with the structure and its surroundings. This paper uses a numerical model to determine the influence of the latter factors on the soil gas and radon entry rates. The most important of these is the presence or absence of a gravel layer below the slab; the presence of the gravel can increase the radon entry rate through the perimeter gap betureen the foundation footer, slab, and wall (slab-footer gap) by as much as a factor of 5 over that for homogazeous soil. The permeability of the gravel becomes important when the soil permeability is unusually high, i.e., greater than 10?10 m2. Of lesser importance are the thickness of the gravel layer and the radium content of the gravel. The sizes and numbers of openings in the slab are relatively unimportant so long as the total opening area is vey small compared to the slab area. If cracks in the basement walls are major radon entry paths, as in concrete-block construction, the permeability of the soil restored to the region adjacent to the walls after completion of construction (backfill) is the determining factor in convective radon entry through these openings; if the soil is packed loosely, so that there is a gap between wall and soil, radon entry through a wall crack may be further increased by as much as a factor of 7.5. Radon entry rates through the slab-footer gap and through openings in the slab are only weakly influenced by the permeability of the backfill. The resistance of the perimeter gap to soil gas entry becomes significant when the gap width falls below 0.001 m, assuming a soil permeability of 10?11 m2.  相似文献   

10.
Radon and radon progeny are present indoors, in houses and others dwellings, representing the most important contribution to dose from natural sources of radiation. Most studies have demonstrated an increased risk of lung cancer at high concentration of radon for both smokers and nonsmokers. The work presents a comparative analysis of the radon exposure data in the two radon-prone areas, ?tei, Transylvania, (Romania), in the near of old Romanian uranium mines and in the granitic area of Torrelodones town, Sierra de Guadarrama (Spain). Measurements of indoor radon were performed in 280 dwellings (Romania) and 91 dwellings (Spain) by using nuclear track detectors, CR 39. The highest value measured in ?tei area was 2650 Bq m− 3 and 366 Bq m− 3 in the Spanish region. The results are computed with the BEIR VI report estimates using the age-duration model at an exposure rate below 2650 Bq m− 3. We used the EC Radon Software to calculate the lifetime lung cancer death risks for individuals groups in function of attained age, radon exposures and tobacco consumption. A total of 233 lung cancer deaths were observed in the ?tei area for a period of 13 years (1994-2006), which is 116.82% higher than expected from the national statistics. In addition, the number of deaths estimated for the year 2005 is 28, which is worth more than 2.21 times the amount expected by authorities. In comparison, for Torrelodones was rated a number of 276 deaths caused by lung cancer for a period of 13 years, which is 2.09 times higher than the number expected by authorities. For the year 2005 in the Spanish region were reported 32 deaths caused by pulmonary cancer, the number of deaths exceeding seen again with a factor of 2.10 statistical expectations. This represents a significantly evidence that elevated risk can strongly be associated with cumulated radon exposure.  相似文献   

11.
We compare data sets from two different Swedish studies which included measuremem of the indoor radon concentration both in 1955 and in 1990 in 178 of the same houses. The purpose is to learn more about how the indoor radon concentration changes over a time scale of years in the same houses. Many sources of both systematic and random errors exist when comparing these types of data sets. Specific types of errors are due to uncertainties in the calibration of the epuipment, the influence of the weather, the time lengths of sampling, airing of some of the dwellings, and changes in ventilation rates. The data indicate a general increase of the radon concentration in the dwellings between 1955 and 1990, with a 1990/1955 ratio of the averages of 1.3. The average radon concentration in all alum shale houses, (where the building material is a source of radon) in 1990 versus 1955 is 204 ± 22 and 163 ± 23 Bq/m3 and in non-alum shale houses is 62 ± 8 and 42 ± 7 Bq/m3, respectively.  相似文献   

12.
There are many mass-transfer models for predicting VOC emissions from building materials described in the literature. In these models, the volatile organic compound (VOC) emission rate and its concentration in a chamber or a room are usually obtained by analytical method or numerical method. Although these methods demonstrate some salient features, they also have some flaws, e.g., for analytical method the solutions of both room or chamber VOC concentration and building material VOC emission rate are constituted of the sum of an infinite series, in which additional computation for finding roots to a transcendental function is necessary, but sometimes quite complicated. Besides, when it is applied in complex cases such as multilayer emission with internal reaction, the solution is very difficult to get; for conventional numerical methods such as finite difference method, discrete treatment of both time and space may cause calculation errors. Considering that, the state-space method widely used in modern automation control field and the heat transfer field is applied to simulate VOC emissions from building materials. It assumes that a slab of building material is composed of a number of finite layers, in each of which the instantaneous VOC concentration is homogenous during the entire process of emission, while the time is kept continuous. Based on this assumption we can predict both the VOC emissions rate and the concentrations of VOCs in the air of a chamber or room. The method is generally applied to simulate VOC emissions from arbitrary layers of building materials, and the solution is explicit and simple. What's more, the method can be applied to the cases where a reaction producing/removing VOC in building materials exists. For some specific cases the method is validated using the experimental data and the analytical solutions in the literature. The method provides a simple but powerful tool for simulating VOC emissions from building materials, which is especially useful in developing indoor air quality (IAQ) simulation software.  相似文献   

13.
Kim S  Kim JA  An JY  Kim HJ  Kim SD  Park JC 《Indoor air》2007,17(5):404-415
Polyvinyl acetate (PVAc) was added as a replacement for melamine-formaldehyde (MF) resin in the formaldehyde-based resin system to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. A variety of techniques, including 20-l chamber, field and laboratory emission cell (FLEC), VOC analyzer and standard formaldehyde emission test (desiccator method), were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with five different MF resin and PVAc blends at MF/PVAc ratios of 100:0, 70:30, 50:50, 30:70 and 0:100. Although urea-formaldehyde (UF) resin had the highest formaldehyde emission, the emission as determined by desiccator method was reduced by exchanging with MF resin. Furthermore, the formaldehyde emission level was decreased with increasing addition of PVAc as the replacement for MF resin. UF resin in the case of beech was over 5.0 mg/l, which exceeded E2 (1.5-5.0 mg/l) grade. However, MF30:PVAc70 was 相似文献   

14.
Radon‐222 gas arises from the radioactive decay of radium‐226 and has a half‐life of 3.8 days. This gas percolates up through soil into buildings, and if it is not evacuated, there can be much higher exposure levels indoors than outdoors, which is where human exposure occurs. Radon exposure is classified as a human carcinogen, and new Danish homes must be constructed to ensure indoor radon levels below 100 Bq/m3. Our purpose was to assess how well 200 newly constructed single detached homes perform according to building regulations pertaining to radon and identify the association between indoor radon in these homes and municipality, home age, floor area, floor level, basement, and outer wall and roof construction. Median (5–95 percentile) indoor radon levels were 36.8 (9.0–118) Bq/m3, but indoor radon exceeded 100 Bq/m3 in 14 of these new homes. The investigated variables explained nine percent of the variation in indoor radon levels, and although associations were positive, none of these were statistically significant. In this study, radon levels were generally low, but we found that 14 (7%) of the 200 new homes had indoor radon levels over 100 Bq/m3. More work is needed to determine the determinants of indoor radon.  相似文献   

15.
Field measurements of the concentration and activity size distribution of radon decay products were conducted in a one-story house located in the Princeton, NJ area. Radon concentration and particle number concentration were also measured. The concentration and activity-weighted size distribution of radon decay products were determined using a microcomputer-controlled, semi-continuous screen diffusion battery system with 6 parallel sampler/detector units. A condensation nuclei counter was used for the measurements of indoor panicle number concentration. Several measurements were made in the living room as well as more than one hundred measurements in the master bedroom of the Princeton house. Aerosols were generated from taking a shower, burning a candle, smoldering a cigarette, vacuuming, and cooking. Therefore, the influence of various indoor panicle sources on the behavior of radon decay products was investigated. With panicles generated from typical household activities, Potential Alpha Energy Concentration (PAEC) increases and the unattached fraction decreases. Larger panicles generated from cigarette smoke and cooking dramatically shifted most of the radon decay products into the attached mode (15-500 nm). With regard to the higher attachment rate, the size distributions of radon decay products remained stable for long periods of time after particle generation. On the other hand, aerosols produced from candle burning and vacuuming were much smaller, with an average attachment diameter of 15 nm. These panicles did decrease the unattached fraction, especially during the aerosol generation period. However, the size distributions of radon decay products returned to the background condition within ISO minutes after the end of particle generation. In these cases, the panicles had a higher deposition rate and a lower attachment rate. The dose of alpha radiation per unit radon concentration resulting from each of these aerosol conditions was calculated using the measured activity size distributions and the most recent James dosimetric model. These doses to basal cells at a breathing rate of 0.45 m3 hr1 ranged from 3 to 14 μGy Bq?1 hr while the dose to secretory cells at a breathing rate of 1.5 m3 hr1 ranged from 13 to 77 μGy Bq?1 hr for the various aerosol conditions.  相似文献   

16.
A review of the emission of VOCs from polymeric materials used in buildings   总被引:6,自引:0,他引:6  
Building and furnishing materials and consumers products are important sources of formaldehyde and other volatile organic compounds (VOCs) in the indoor environment. The emission from materials is usually continuous and may last for many years in a building. The available evidence indicates that VOCs can cause adverse health effects to the building occupants and may contribute to symptoms of ‘Sick Building Syndrome’.

Control of VOC emission should increasingly become an important consideration for the design and manufacture of polymeric materials used in buildings. The EC Construction Products Directive ‘Essential Requirements’ set a framework for limiting the use of materials that could pose a health risk to building occupants. Furthermore, the on-going development of voluntary labelling schemes and data bases of material emissions that could be used by building designers, should further strengthen the demand for ‘low VOC emitting’ products.

This paper reviews available information about the emission of VOCs from polymeric building materials, the level of emissions in the indoor environment and the requirements for testing of the materials.  相似文献   


17.
Many volatile organic compounds (VOCs) are classified as known or possible carcinogens, irritants, and toxicants, and VOC exposure has been associated with the onset and exacerbation of asthma. This study characterizes VOC levels in 126 homes of children with asthma in Detroit, Michigan, USA. The total target VOC concentration ranged from 14 to 2274 μg/m3 (mean = 150 μg/m3; median = 91 μg/m3); 56 VOCs were quantified; and d‐limonene, toluene, p, m‐xylene, and ethyl acetate had the highest concentrations. Based on the potential for adverse health effects, priority VOCs included naphthalene, benzene, 1,4‐dichlorobenzene, isopropylbenzene, ethylbenzene, styrene, chloroform, 1,2‐dichloroethane, tetrachloroethene, and trichloroethylene. Concentrations varied mostly due to between‐residence and seasonal variation. Identified emission sources included cigarette smoking, solvent‐related emissions, renovations, household products, and pesticides. The effect of nearby traffic on indoor VOC levels was not distinguished. While concentrations in the Detroit homes were lower than levels found in other North American studies, many homes had elevated VOC levels, including compounds that are known health hazards. Thus, the identification and control of VOC sources are important and prudent, especially for vulnerable individuals. Actions and policies to reduce VOC exposures, for example, sales restrictions, improved product labeling, and consumer education, are recommended.  相似文献   

18.
Hotel housekeepers represent a large, low-income, predominantly minority, and high-risk workforce. Little is known about their exposure to chemicals, including volatile organic compounds (VOCs). This study evaluates VOC exposures of housekeepers, sources and factors affecting VOC levels, and provides preliminary estimates of VOC-related health risks. We utilized indoor and personal sampling at two hotels, assessed ventilation, and characterized the VOC composition of cleaning agents. Personal sampling of hotel staff showed a total target VOC concentration of 57 ± 36 µg/m3 (mean ± SD), about twice that of indoor samples. VOCs of greatest health significance included chloroform and formaldehyde. Several workers had exposure to alkanes that could cause non-cancer effects. VOC levels were negatively correlated with estimated air change rates. The composition and concentrations of the tested products and air samples helped identify possible emission sources, which included building sources (for formaldehyde), disinfection by-products in the laundry room, and cleaning products. VOC levels and the derived health risks in this study were at the lower range found in the US buildings. The excess lifetime cancer risk (average of 4.1 × 10−5) still indicates a need to lower exposure by reducing or removing toxic constituents, especially formaldehyde, or by increasing ventilation rates.  相似文献   

19.
In one of the 50 houses in which, during a national radon survey of 1000 homes in Slovenia, indoor radon concentrations exceeded 1000 Bq m−3, radon was further investigated. Except in the attic, elevated radon concentrations were found everywhere in the home, ranging from 0.5 to 12 kBq m−3. Applying ICRP 65 methodology, an annual effective dose in the range from 9 to 35 mSv was estimated for an inhabitant for different exposure scenarios. The radon problem was successfully mitigated and radon concentration reduced below 200 Bq m−3.  相似文献   

20.
Monitoring of human reactions to the emission of formaldehyde and volatile organic compounds (VOC) from four commonly used building materials was carried out. The building materials were: a painted gypsum board, a rubber floor, a nylon carpet, and a particle board with an acid-curing paint. The exposures were performed in climate chambers. The air quality was quantified on the decipol scale by a trained panel, measurements of formaldehyde and VOC being performed simultaneously. The irritating potency of the materials was measured by a mouse bioassay. The VOC measurements showed several malodorants and irritants. Some abundant VOC identified in the head-space analyses were absent in the climate chamber air. The rubber floor and the nylon carpet exhibited a marked increase in decipols compatible with a number of odorous VOC identified in the air. A high formaldehyde concentration (minimum 743μg/m3) was measured for the particle board coated with an acid-curing paint. This was not reflected by a corresponding relatively high decipol value but a long-lasting irritating potency was observed in the mouse bioassay. TVOC sampled on Tenax and expressed in mass per volume as well as in molar concentration, and decipol evaluation both have limitations and should be used with caution as indicators of (perceived) indoor air quality. Eye irritation expressed by means of the eye index reflecting the tear film quality index (comprised of break-up time, foam formation, thickness of the precorneal lipid layer of the tear film, and epithelial damage) was found to be insensitive to formaldehyde and a VOC mixture but sensitive to TVOC concentrations of 1–2 mg/m3. Lipophilic VOC may be the cause of reduced tear film quality by destabilization of the lipid multilayer of the tear film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号