首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate near-infrared reflectance spectroscopy (NIR), and multivariate calibration potential as a rapid method to determinate anthocyanin content in intact fruit (açaí and palmitero-juçara). Several multivariate calibration techniques, including partial least squares (PLS), interval partial least squares, genetic algorithm, successive projections algorithm, and net analyte signal were compared and validated by establishing figures of merit. Suitable results were obtained with the PLS model (four latent variables and 5-point smoothing) with a detection limit of 6.2 g kg?1, limit of quantification of 20.7 g kg?1, accuracy estimated as root mean square error of prediction of 4.8 g kg?1, mean selectivity of 0.79 g kg?1, sensitivity of 5.04 × 10?3 g kg?1, precision of 27.8 g kg?1, and signal-to-noise ratio of 1.04 × 10?3 g kg?1. These results suggest NIR spectroscopy and multivariate calibration can be effectively used to determine anthocyanin content in intact açaí and palmitero-juçara fruit.  相似文献   

2.
The feasibility of prediction of cadmium (Cd) content in brown rice was investigated by near‐infrared spectroscopy (NIRS) and chemometrics techniques. Spectral pretreatment methods were discussed in detail. Synergy interval partial least squares (siPLS) algorithm was used to select the efficient combinations of spectral subintervals and wavenumbers during constructing the quantitative calibration model. The performance of the final model was evaluated by the use of root mean square error of cross‐validation (RMSECV), root mean square error of prediction (RMSEP) and correlation coefficients for calibration set and prediction set (Rc and Rp), respectively. The results showed that the optimum siPLS model was achieved when two spectral subinterval and fifty‐two variables were selected. The predicted result of the best model obtained was as follows: RMSECV = 0.232, Rc = 0.930, RMSEP = 0.250 and Rp = 0.915. Compared with PLS and interval PLS models, siPLS model was slightly better than those methods. These results indicate that it is feasible to predict and screen Cd content in brown rice using NIRS.  相似文献   

3.
The present study investigated the application of near infrared spectroscopy as a green, quick, and efficient alternative to analytical methods currently used to evaluate the quality (moisture, total sugars, acidity, soluble solids, pH and ascorbic acid) of frozen guava and passion fruit pulps. Fifty samples were analyzed by near infrared spectroscopy (NIR) and reference methods. Partial least square regression (PLSR) was used to develop calibration models to relate the NIR spectra and the reference values. Reference methods indicated adulteration by water addition in 58% of guava pulp samples and 44% of yellow passion fruit pulp samples. The PLS models produced lower values of root mean squares error of calibration (RMSEC), root mean squares error of prediction (RMSEP), and coefficient of determination above 0.7. Moisture and total sugars presented the best calibration models (RMSEP of 0.240 and 0.269, respectively, for guava pulp; RMSEP of 0.401 and 0.413, respectively, for passion fruit pulp) which enables the application of these models to determine adulteration in guava and yellow passion fruit pulp by water or sugar addition. The models constructed for calibration of quality parameters of frozen fruit pulps in this study indicate that NIR spectroscopy coupled with the multivariate calibration technique could be applied to determine the quality of guava and yellow passion fruit pulp.  相似文献   

4.
This paper reported the results of simultaneous analysis of main catechins (i.e., EGC, EC, EGCG and ECG) contents in green tea by the Fourier transform near infrared reflectance (FT-NIR) spectroscopy and the multivariate calibration. Partial least squares (PLS) algorithm was conducted on the calibration of regression model. The number of PLS factors and the spectral preprocessing methods were optimised simultaneously by cross-validation in the model calibration. The performance of the final model was evaluated according to root mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP) and correlation coefficient (R). The correlations coefficients (R) in the prediction set were achieved as follows: R = 0.9852 for EGC model, R = 0.9596 for EC model, R = 0.9760 for EGCG model and R = 0.9763 for ECG model. This work demonstrated that NIR spectroscopy with PLS algorithm could be used to analyse main catechins contents in green tea.  相似文献   

5.
The feasibility of near infrared (NIR) spectroscopy for predicting reducing sugar content during grape ripening, winemaking, and aging was assessed. NIR calibration models were developed using a set of 146 samples scanned in a quartz flow cell with a 50 mm path length in the NIR region (800–1050 nm), in a fiber spectrometer system working in transmission mode. Principal component analysis (PCA), partial least squares (PLS), and multiple linear (MLR) regressions were used to interpret spectra and to develop calibrations for reducing sugar content in grape, must, and wine. The PLS model based on the full spectral range (800–1050 nm), yielded a determination coefficient (r2) of 0.98, a standard error of cross validation (SECV) of 13.62 g/l and a root mean square error of cross validation (RMSECV) of 13.58 g/l. The mathematical model was tested with independent validation samples (n = 48); the resulting values for r2, the standard error of prediction (SEP) and the root mean square error of prediction (RMSEP) for the same parameter were 0.98, 10.84, and 12.20 g/l, respectively. The loading weights of latent variables from the PLS model were used to identify sensitive wavelengths. To assess their suitability, MLR models were built using these wavelengths. Wavelength significance was analyzed by ANOVA, and four wavelengths (909, 951, 961, and 975 nm) were selected, setting statistical significance at the 99% confidence level. The MLR model yielded acceptable results for r2 (0.92), SEP (19.97 g/l) and RMSEP (20.51 g/l). The results suggest that NIR spectroscopy is a promising technique for predicting reducing sugar content during grape ripening, as well as during the fermentation and aging of white and red wines. Individual fingerprint wavelengths strongly associated with reducing sugar content could be used to enhance the efficacy of this simple, efficient and low-cost instrument.  相似文献   

6.
Two sensitive wavelength (SWs) selection methods combined with visible/near-infrared (Vis/NIR) spectroscopy were investigated to determine the soluble solids content (SSC) and pH value in peaches, including latent variables analysis (LVA) and independent component analysis (ICA). A total of 100 samples were prepared for the calibration (n = 70) and prediction (n = 30) sets. Calibration models using SWs selected by LVA and ICA were developed, including linear regression of partial least squares (PLS) analysis and nonlinear regression of least squares-support vector machine (LS-SVM). In the nonlinear models, four SWs selected by ICA achieved the optimal ICA-LS-SVM model compared with LV-LS-SVM and both of them better than linear model of PLS. The correlation coefficients (r p and r cv), root mean square error of cross validation, root mean square error of prediction, and bias by ICA-LS-SVM were 0.9537, 0.9485, 0.4231, 0.4155, and 0.0167 for SSC and 0.9638, 0.9657, 0.0472, 0.0497, and −0.0082 for pH value, respectively. The overall results indicated that ICA was a powerful way for the selection of SWs, and Vis/NIR spectroscopy incorporated to ICA-LS-SVM was successful for the accurate determination of SSC and pH value in peach.  相似文献   

7.
利用傅里叶近红外光谱分析技术,以磷虾粉样品的实测值与模型预测值为基础,研究了采用最小二乘法建立磷虾粉原始样品与磷虾粉混合样品中水分、脂肪和蛋白含量近红外定标模型的可行性和准确性.结果表明,磷虾粉近红外图谱最佳预处理方式为:标准正态变换预处理+一阶导数+Norris导数滤波;以磷虾粉混合样品构建的近红外模型较磷虾粉原始样...  相似文献   

8.
为了探寻一种快速无损检测猕猴桃糖度的方法,利用小波滤噪法对猕猴桃1000~2500nm 近红外光谱进行了预处理,并用偏最小二乘法(PLS)、区间偏最小二乘法(iPLS)和联合区间偏最小二乘法(siPLS)分别建立预测模型。结果表明,采用联合区间偏最小二乘法将光谱划分为16 个子区间,利用其中的第9、11、13 号3 个子区间联合建立的糖度模型效果最佳,其校正集相关系数和均方根误差分别为0.9414 和0.3788。预测集相关系数和均方根误差分别为0.9295 和0.3904,主因子数为7 个。研究表明,用小波滤噪和联合区间偏最小二乘法所建立的猕猴桃糖度模型不但减少建模运算时间,剔除噪声过大的谱区,而且预测能力和精度均有所提高。  相似文献   

9.
In this study, near-infrared (NIR) spectroscopy coupled with partial least-squares (PLS) regression and various efficient variable selection algorithms, synergy interval-PLS (Si-PLS), backward interval PLS (Bi-PLS) and genetic algorithm-PLS (GA-PLS) were applied comparatively for the prediction of antioxidant activity in black wolfberry (BW). The eight assays were used for quantification of antioxidant content. The developed models were assessed using correlation coefficients (R2) of the calibration (Cal.) and prediction (Pre.); root mean square error of prediction, RMSEP; standard Error of Cross-Validation, RMSECV and residual predictive deviation, RPD. The performance of the built model greatly improved by the application of Si-PLS, Bi-PLS and GA-PLS compared with full spectrum PLS. The R2 values determined for calibration and prediction set ranged from 0.8479 to 0.9696 and 0.8401 to 0.9638, respectively. These findings revealed that NIR spectroscopy combined with chemometric algorithms can be used for quantification of antioxidant activity in BW samples.  相似文献   

10.
Visible and near-infrared (VIS/NIR) spectroscopy combined with least squares support vector machine (LS-SVM) was employed to determine soluble solid contents (SSC) and pH of white vinegars. Three hundred twenty vinegar samples were distributed into a calibration set (240 samples) and a validation set (80 samples). Partial least squares (PLS) analysis was implemented for the regression model and extraction of latent variables (LVs). The selected LVs were used as LS-SVM input variables. Finally, LS-SVM models with radial basis function kernel were achieved with the comparison of PLS models. The results indicated that LS-SVM outperformed PLS models. The correlation coefficient (r), root mean square error of prediction, bias, and residual prediction deviation for the validation set were 0.988, 0.207°Brix, 0.183, and 6.4 for SSC whereas these were 0.988, 0.041, ?0.002, and 6.5 for pH, respectively. The overall results indicated that VIS/NIR spectroscopy and LS-SVM could be used as a rapid alternative method for the prediction of SSC and pH of white vinegars, and the results could be helpful for the fermentation process and quality control monitoring of white vinegar production.  相似文献   

11.
The visible/near-infrared (Vis/NIR) reflectance spectroscopy as an on-line approach to assess the pH value in fresh pork was investigated. Multivariate calibration was carried out by using chemometrics. Discrete wavelet transform was applied to de-noise the spectra scanned on-line, and several variable selection methods were proposed to simplify the calibration models. The study found that the model based on the spectra de-noised by Daubechies 6 wavelet (db6) at decomposition level 6, soft thresholding strategy and minimaxi threshold estimator gave reasonable performance (r > 0.900, root mean square error of calibration (RMSEC) = 0.100, cross validation (RMSECV) = 0.139 and prediction (RMSEP) = 0.125). Then, only 15% variables from this model were selected via the method of uninformative variable elimination to develop a simpler model, of which the performance deterioration could be ignored. The results showed that Vis/NIR can be used to predict pH value in fresh pork on-line, and variable selection can provide a simpler, more cost-effective calibration model.  相似文献   

12.
Near‐infrared reflectance (NIR) spectroscopy combined with chemometrics was used to assess nitrogen (N) and dry matter content (DM) and chlorophyll in whole‐wheat plant (Triticum aestivum L). Whole‐wheat plant samples (n = 245) were analysed by reference method and by visible and NIR spectroscopy, in fresh (n = 182) and dry (n = 63) presentations, respectively. Calibration equations were developed using partial least squares (PLS) and validated using full cross‐validation (leave‐one‐out method). Coefficient of determination in calibration (R2CAL) and the standard error of cross‐validation (SECV) for N content in fresh sample presentation, after second derivative, were 0.89 (SECV: 0.64%), 0.86 (SECV: 0.66%) and 0.82 (SECV: 0.74%) using the visible + NIR, NIR and visible wavelength regions, respectively. Dry sample presentation gave better R2CAL and SECV for N compared with fresh presentation (R2CAL > 0.90, SECV < 0.20%) using visible + NIR. The results demonstrated that NIR is a suitable method to assess N concentration in wheat plant using fresh samples (unground and undried). Copyright © 2006 Society of Chemical Industry  相似文献   

13.
Near-infrared (NIR) spectroscopy was investigated to determine the acetic, tartaric, formic acids and pH of fruit vinegars. Optimal partial least squares (PLS) models were developed with different preprocessing. Simultaneously, the performance of least squares-support vector machine (LS-SVM) models was compared with three kinds of inputs, including wavelet transform (WT), latent variables, and effective wavelengths (EWs). The results indicated that all LS-SVM models outperformed PLS models. The optimal correlation coefficient (r), root mean square error of prediction and bias for validation set were 0.9997, 0.3534, and −0.0110 for acetic acid by WT-LS-SVM; 0.9985, 0.1906, and 0.0025 for tartaric acid by WT-LS-SVM; 0.9987, 0.1734, and 0.0012 for formic acid by EW-LS-SVM; and 0.9996, 0.0842, and 0.0012 for pH by WT-LS-SVM, respectively. The results indicated that NIR spectroscopy (7,800–4,000 cm−1) combined with LS-SVM could be utilized as a precision method for the determination of organic acids and pH of fruit vinegars.  相似文献   

14.
Visible and near infrared (Vis/NIR) spectroscopy was investigated to determine the soluble solids content (SSC), pH and firmness of different varieties of pears. Two-hundred forty samples (80 for each variety) were selected as sample set. Two-hundred ten pear samples (70 for each variety) were selected randomly for the calibration set, and the remaining 30 samples (10 for each variety) for the validation set. Partial least squares (PLS) and least squares-support vector machine (LS-SVM) with different spectral preprocessing techniques were implemented for calibration models. Different wavelength regions including Vis, NIR and Vis/NIR were compared. It indicated that Vis/NIR (400–1800 nm) was optimal for PLS and LS-SVM models. Then, LS-SVM models were developed with a grid search technique and RBF kernel function. All LS-SVM models outperformed PLS models. Next, effective wavelengths (EWs) were selected according to regression coefficients. The EW-LS-SVM models were developed and a good prediction precision and stability was achieved compared with PLS and LV-LS-SVM models. The correlation coefficient of prediction (rp), root mean square error of prediction (RMSEP) and bias for the best prediction by EW-LS-SVM were 0.9164, 0.2506 and −0.0476 for SSC, 0.8809, 0.0579 and −0.0025 for pH, whereas 0.8912, 0.6247 and −0.2713 for firmness, respectively. The overall results indicated that the regression coefficient was an effective way for the selection of effective wavelengths. LS-SVM was superior to the conventional linear PLS method in predicting SSC, pH and firmness in pears. Therefore, non-linear models may be a better alternative to monitor internal quality of fruits. And the EW-LS-SVM could be very helpful for development of portable instrument or real-time monitoring of the quality of pears.  相似文献   

15.
为弥补国标检测方法测定香菇总糖含量耗时长、步骤繁琐的缺陷,创建近红外(near infrared,NIR)光谱技术在测定香菇总糖含量方面应用,采用NIR分析技术与偏最小二乘算法(partial least square,PLS)建立香菇总糖的NIR分析模型,并对模型进行参数优化。实验共收集了106 批样品,从中随机抽取13 批作为验证集,用于验证该模型的可靠性,剩余的93 批样品为校正集。在校正集中,通过杠杆值法和学生化残差法筛选出65 批能够较理想地代表一般香菇特征的样品,用于确定NIR光谱检测范围、PLS主因子数等参数,基于NIR光谱数据的香菇总糖含量建立定量分析模型。校正集的建模结果表明,使用多元散射校正(multiplicative scatter correction,MSC)及二阶导数(second derivatives,SD)对原始光谱进行预处理,光谱范围为4 000~10 000 cm-1,PLS主因子数为10时,基于NIR的香菇总糖检测模型的建模效果最优,即均方根误差比值满足检验条件,校正集R2(决定系数)最高为0.940 04,校正均方根误差为1.393,预测集均方根误差为1.557,相对分析误差最优为4.08。验证集对模型的检验结果显示,样品的预测值和实测值具有良好的线性关系,且二者没有显著差异(P=0.993)。由此表明,本实验建立的NIR分析模型可用于准确预测香菇样品的总糖含量。  相似文献   

16.
The direct and simultaneous quantitative determination of the mean degree of polymerization (mDP) and the degree of galloylation (%G) in grape seeds were quantified using diffuse reflectance infrared Fourier transform spectroscopy and partial least squares (PLS). The results were compared with those obtained using the conventional analysis employing phloroglucinolysis as pretreatment followed by high performance liquid chromatography‐UV and mass spectrometry detection. Infrared spectra were recorded in solid state samples after freeze drying. The 2nd derivative of the 1832 to 1416 and 918 to 739 cm?1 spectral regions for the quantification of mDP, the 2nd derivative of the 1813 to 607 cm?1 spectral region for the degree of %G determination and PLS regression were used. The determination coefficients (R2) of mDP and %G were 0.99 and 0.98, respectively. The corresponding values of the root‐mean‐square error of calibration were found 0.506 and 0.692, the root‐mean‐square error of cross validation 0.811 and 0.921, and the root‐mean‐square error of prediction 0.612 and 0.801. The proposed method in comparison with the conventional method is simpler, less time consuming, more economical, and requires reduced quantities of chemical reagents and fewer sample pretreatment steps. It could be a starting point for the design of more specific models according to the requirements of the wineries.  相似文献   

17.
张斌  沈飞  章磊 《现代食品科技》2019,35(2):247-252
本研究运用近红外光谱无损检测技术,开发了一种适用于面粉品质检测的在线测量系统。本系统在硬件平台基础上,采用C++Builder 6.0对NIR 1.7/S微型光谱仪进行二次开发,编写了具有光谱采集、面粉品质预测、模型更新和数据存储等功能的软件。对市售170种面粉进行试验,以面粉水分含量为代表性指标。通过对比不同光谱预处理方法建模结果,发现不进行任何预处理时的面粉水分偏最小二乘回归(PLS)得到的模型精度最高。建模集和验证集决定系数(R2)分别为0.947,0.841;均方根误差(RMSE)分别为0.146%,0.198%;RPD值为2.53。模型导入软件后对30份新样品进行外部验证,预测值与测量值决定系数(R2)为0.883,均方根误差为0.206%。结果表明,该系统能够初步实现面粉水分的实时预测,为近红外在线检测技术应用提供了一定的技术参考。  相似文献   

18.
《LWT》2005,38(8):821-828
The oxidative and hydrolytic degradation of lipids in fish oil was monitored using partial least-squares (PLS) regression and near-infrared reflectance (NIR) spectroscopy. One hundred and sixty (n=160) fish oil samples from a fishmeal factory were scanned in transflectance by an NIR monochromator instrument (1100–2500 nm). Calibration models were performed for free fatty acids (FFA), moisture (M), peroxide value (PV) and anisidine value (AV). Coefficients of determination in calibration (R2) and standard errors of cross validation (SECV) were 0.96 (SECV: 0.59) and 0.94 (SECV: 0.03) for FFA and M in g/kg, respectively. The accuracy of the NIR calibration models were tested using a validation set, yielding coefficients of correlation (r) and standard errors of prediction (SEP) of 0.98 (SEP: 0.50) and 0.80 (SEP: 0.05) for FFA and M in g/kg, respectively. Poor accuracy (R2<0.80) was obtained for the NIR calibration models developed for PV and AV. The paper demonstrates that fish oil hydrolytic degradation of lipids, which seriously affect oil use and storage under industrial conditions, can be successfully monitored using PLS regression and NIR spectroscopy by the fishmeal industry.  相似文献   

19.
Non‐destructive near‐infrared (NIR) measurements were performed on 100 live, anaesthetised farmed Atlantic salmon, whole weight 1–11 kg, using two different NIR instruments: a grating monochromator instrument equipped with a fibre optic interactance probe, and a diode array instrument measuring diffuse reflectance in a non‐contact mode. Crude fat content was determined using partial least squares (PLS) regression. Full cross‐validation was used to evaluate the performance of the calibration models, expressed as the root mean square error of prediction (RMSEP). For the fibre optic instrument the wavelength range from 800 to 1098 nm resulted in a correlation coefficient of 0.90 and an RMSEP equal to 14 g kg?1 fat. The diode array instrument using the wavelength range from 900 to 1700 nm gave results of the same accuracy. The measurement times were 21 and 3 s respectively. It is concluded that either instrument could be used to determine the crude fat content in live Atlantic salmon, with good accuracy. © 2003 Society of Chemical Industry  相似文献   

20.
A quick, non-destructive method, based on Fourier transform near-infrared (FT-NIR) spectroscopy for egg content determination of dry pasta is presented. Multivariate calibration was carried out by using partial least squares (PLS) regression. A calibration set of 108 samples, a validation set of 22 samples and a prediction set of 11 samples of egg pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 800-2500 nm spectral range. The optimal results for egg content (root mean square error of prediction (RMSEP) = 0.7; R2 = 90.7, Rank = 4) were obtained when the spectra were subjected to the first derivation combined with multiplicative scatter correction (MSC) and smoothing. Egg content was determined from FT-NIR results by introducing a mathematical correction step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号