首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moments of the multibranch equal gain combiner (EGC) output signal-to-noise ratio (SNR) are only known for independent fading channels or exponentially correlated Nakagami-m fading channels. In this paper, we derive the moments of the EGC output SNR in equally correlated Rayleigh, Rician, and Nakagami-m fading channels. Our moment expressions can be used to evaluate the outage and the average error rate as well as purely moments-based measures such as the average output SNR and the amount of fading as functions of the fading correlation. Numerical results that illustrate the effect of fading correlation on the distribution of the EGC output SNR are also provided.  相似文献   

2.
Cooperative diversity is a promising technology for future wireless networks. In this paper, we derive exact closed-form expressions for the average bit error rate (BER) and outage probability (Pout) for differential equal gain combining (EGC) in cooperative diversity networks. The considered network uses amplify-and-forward relaying over independent non-identical Nakagami-m fading channels. The performance metrics (BER and Pout) are derived using the moment generating function (MGF) method. Furthermore, we found (in terms of MGF) the SNR moments, the average signal-to-noise ratio (SNR) and amount of fading. Numerical results show that the differential EGC can bene?t from the path-loss reduction and outperform the traditional multiple-input single output (MISO) system. Also, numerical results show that the performance of the differential EGC is comparable to the maximum ratio combining (MRC) performance.  相似文献   

3.
This paper derives the average bit error probability (BEP) of differential quaternary phase shift keying (DQPSK) with postdetection equal gain combining (EGC) diversity reception over independent and arbitrarily correlated fading channels. First, using the associated Legendre functions, the average BEP of DQPSK is analyzed over independent Rayleigh, Nakagami-m, and Rician fading channels. Finite-series closed-form expressions for the average BEP of DQPSK over L-branch independent Rayleigh and Nakagami-m fading channels (for integer Lm) are presented. Besides, a finite-series closed-form expression is given for the average BEP of differential binary phase shift keying (DBPSK) with EGC over independent Rician fading channels. Second, an alternative approach is propounded to study the performance of DQPSK over arbitrarily correlated Nakagami-m and Rician fading channels. Relatively simple BEP expressions in terms of a finite sum of a finite-range integral are proposed. Moreover, the penalty in signal to noise ratio (SNR) due to arbitrarily correlated channel fading is also investigated. Finally, the accuracy of the results is verified by computer simulation.  相似文献   

4.
A new type of hybrid selection/equal-gain combining (HS/EGC) scheme is proposed and analyzed. This scheme dynamically selects the best combination of branches by a simple test and combines them in equal-gain combining (EGC) manner. As a result, the scheme always shows better performance than conventional EGC and selection diversity (SD), and close to maximal-ratio combining (MRC). As an exemplary performance indicator, its average output SNR for dual correlated Nakagami-m fading channels is calculated and demonstrated in comparison with other diversity schemes  相似文献   

5.
Motivated by the importance of Nakagami-n (Rice) and Nakagami-q (Hoyt) statistical models to describe channel fading in land, mobile, terrestrial, and satellite telecommunications, we present an alternative moments-based approach to the performance analysis of equal-gain combining (EGC) receivers over independent, not necessarily identically distributed Rice- and Hoyt-fading channels. Exact closed-form expressions for the moments of the signal-to-noise ratio (SNR) at the output of the combiner are derived and significant performance criteria such as, the average output SNR, the amount of fading and the spectral efficiency at the low power regime, are studied. Moreover, using Pade rational approximation to the moment-generating function of the output SNR, the average symbol error probability and the outage probability are evaluated. We also study the suitability of modeling a Hoyt-fading environment by a properly chosen Nakagami-m model, as far as the error performance of the EGC is concerned.  相似文献   

6.
The performance of M-ary orthogonal noncoherent frequency-shift keying (NCFSK) with N branch signal-plus-noise (S + N) selection combining (SC) in Nakagami-m fading (m, integer) is studied. Both independent, identically distributed (i.i.d) and independent, nonidentically distributed (i.n.d) diversity branches are considered and two S + N SC receiver structures are examined. The performances of the S + N SC receivers are compared to those of classical SC and square-law combining (SLC) receivers. The effects of modulation order, fading parameter and the number of diversity branches on the performance of S + N SC are compared to the effects on the performances of classical SC and SLC. For example, it is shown that in an i.n.d fading channel, the value of signal-to-noise ratio (SNR) at which the error rate curves of classical SC and S + N SC cross, decreases as the modulation order, M, increases. Our results indicate that in i.n.d fading channels classical SC outperforms S + N SC for small ranges of SNR, while for moderate to large SNR values S + N SC has superior performance over classical SC. It is also shown that increasing the diversity order will increase the performance gap of S 4N SC over classical SC and over SLC in both i.i.d and i.n.d Nakagami-m fading channels  相似文献   

7.
This paper examines the asymptotic (M/spl rarr//spl infin/) performance of M-ary frequency-shift keying (M-FSK) in multi-channels, or multiple frequency-nonselective, slowly fading channels, with coding, side information, and diversity reception. In particular, Reed-Solomon (RS) coding is considered in conjunction with the ratio-threshold test (RTT), which generates side information regarding the reliability of received symbols. The asymptotic performance of orthogonal signaling in multichannels with maximal ratio combining (MRC), postdetection equal gain combining (EGC), hybrid selection combining (H-SC), and selection combining (SC) is derived for an arbitrary statistical fading model and diversity order. The derivations reveal that coherent and noncoherent implementations of diversity combining schemes yield the same performance asymptotically. In addition, the asymptotic results are evaluated assuming a Nakagami-m fading model, and the effect of fading severity, diversity order, code rate, and side information upon the performance of the various diversity combiners is investigated. The minimum signal-to-noise ratio (SNR) required to achieve arbitrarily reliable or error-free communication, as well as the associated optimal RS code rate, are determined for various cases.  相似文献   

8.
In this letter, an alternative moments-based approach for the performance analysis of an L-branch predetection equal gain combiner (EGC) over independent or correlated Nakagami-m fading channels is presented. Exact closed-form expressions are derived for the moments of the EGC output signal-to-noise ratio (SNR), while the corresponding moment-generating function (MGF) is accurately approximated with the aid of Pade/spl acute/ approximants theory. Important performance criteria are studied; the average output SNR, which is expressed in closed form both for independent and correlative fading and for arbitrary system parameters, the average symbol-error probability for several coherent, noncoherent, and multilevel modulation schemes, and the outage probability, which are both accurately approximated using the well-known MGF approach. The proposed mathematical analysis is illustrated by various numerical results, and computer simulations have been performed to verify the validity and the accuracy of the theoretical approach.  相似文献   

9.
Theoretical performance results for L-branch (L/spl ges/3) coherent equal-gain combining (EGC) in correlated fading channels are not known. This letter develops a novel approach for performance analysis of L-branch EGC in equally correlated Rayleigh fading channels. Such channel gains can be transformed into a set of conditionally independent channel gains. The cumulative distribution function (cdf) of the EGC output signal-to-noise ratio (SNR) is, therefore, derived. The symbol error rate (SER) of different modulation schemes with EGC in equally correlated Rayleigh fading channels is evaluated. Numerical results that illustrate the effects of equally correlated fading on the SER performance of EGC are also provided.  相似文献   

10.
Consider a wireless communication system in flat fading with N transmit and M receive antennas using space-time block coding, where N/spl times/1 code vectors are transmitted over L symbol intervals, resulting in an N/spl times/L code matrix. A least-squares estimate (LSE) as well as a minimum mean-square estimate (MMSE) of the M/spl times/N channel matrix is obtained from a sequence of pilot code vectors. For the case of linear square (i.e., with N=L) orthogonal codes over constant envelope constellations, we obtain an expression for the exact decoding error probability (DEP) for coherent maximum-likelihood decoding. We also find the coding gain for high average signal-to-noise ratio (SNR) per diversity branch in the case of Rayleigh fading. A comparison between both channel-estimation techniques is done in terms of the average pilot-power-to-signal-power ratio (APPSPR). It is found that MMSE requires lower pilot power than LSE for the same DEP and the same average SNR per diversity branch. In addition, the error performance with LSE approaches that with MMSE, with an increase of average SNR per branch or an increase of APPSPR.  相似文献   

11.
In this paper, the performance analysis based on PDF approach of an L ‐branch equal gain combiner (EGC) over independent and not necessarily identical Weibull fading channels is presented. Several closed‐form approximate expressions are derived in terms of only one Fox H‐function as PDF, cumulative distribution function, and moments of the EGC output Signal‐to‐noise ratio (SNR), outage probability, amount of fading, channel capacity, and the average symbol error rate for various digital modulation schemes. All results are illustrated and verified by simulations using computer algebra systems.  相似文献   

12.
Average symbol error rate (ASER) of an equal gain combining (EGC) receiver with an arbitrary number of branches in exponentially correlated, Nakagami-m fading channels has been derived for binary, differential phase-shift keying (DPSK) and noncoherent frequency-shift keying (NCFSK) modulations. A Parseval's theorem based approach has been used. Numerical and simulation results have been found to be in close agreement. Results show that for a given ASER, as expected, exponentially correlated fading requires a higher SNR with respect to independent fading. For a given number of branches L, increase in SNR required (SNR penalty) with respect to independent fading is less for higher values of fading parameter m while for a given m, SNR penalty is more for higher L  相似文献   

13.
The exact symbol error rates (SERs) of several M-ary modulation schemes are obtained in a unified manner for mobile radio receivers employing dual-branch coherent equal-gain combining (EGC), where the received signals on each branch follow either similar or different fading distributions. Specifically, the cases considered are Nakagami-m, Rice, and Hoyt fading on both branches, but with not necessarily identical parameters, and mixed Nakagami-m/Rice and Nakagami-m/Hoyt fading; only the integer or half-integer values of the Nakagami-parameter are considered. While the previous exact expressions for the SERs of general M-ary modulations with L-branch EGC contained double integrals, the error probability expressions derived in this paper for the case of L=2 contain only a single integral. In addition, the derived probability distributions also allow the direct obtaining of other useful performance measures, such as the exact level crossing rates, average fade durations, and outage probabilities.  相似文献   

14.
Performance of M-PSK with GSC and EGC with Gaussian weighting errors   总被引:2,自引:0,他引:2  
Using a moment-generating function (MGF)-based approach, we study the performance of M-ary phase-shift keying (M-PSK) with generalized selection combining (GSC) and equal gain combining (EGC) in fading channels (including Rayleigh, Rician, Nakagami-m, and Nakagami-q fading) with independent and identically distributed (i.i.d) branches. Analytical expressions for the error and outage probabilities, the signal-to-noise-ratio (SNR) statistics, and the channel capacity of M-PSK diversity receivers are derived, taking into account the effects of Gaussian weighting errors and all relevant system and channel parameters. Unlike the case of perfect channel-state information (CSI), the outage probability for the case of imperfect channel estimation (ICE) is not only a function of the normalized SNR with respect to the SNR threshold, but also a function of the operating SNR itself. The SNR loss of the M-PSK GSC and EGC receivers due to ICE and the relation between the receiver input and output SNRs for ICE are derived. Our results show that, even with ICE, GSC and EGC are effective in improving the output SNR and significantly reduce the error floor and the channel-capacity loss caused by ICE.  相似文献   

15.
Order diversity combining technique is one of efficient methods to lower the complexity but not to significantly degrade performance. Recently, Eng and Milstein [1] proposed a novel order-combining technique, called the second order diversity combining (SC2) and third order diversity combining (SC3) and applied to Rayleigh fading channel. SC2 and SC3 schemes mean that the two (three) signals with the first two (three) largest amplitudes among the branches are chosen and coherently combined. However, when compared to Rayleigh distribution, the Nakagami-m distribution [10] provides a more general and versatile way to model wireless channel. For the reason, the bit error rate (BER) performance of proposed schemes were then analyzed with order statistic method and compared to the traditional diversity technique over Nakagami fading environment in this paper. The results are compared to maximal ratio combining (MRC), and conventional selection combining (SC) in coherent reception and to equal gain combining (EGC) in noncoherent reception. The results show that SC is in performance the worst for either in coherent or in noncoherent schemes, as expected. The performance differences between SC2 (SC3) and MRC (EGC) are not significant when the diversity order L 3, but the difference will increase when L 5. It is worth noting that the result of [1] is a special case with fading figure, m = 1. It is also observed the performance is much affected by the number of diversity branches L, the fading figure m, and the signal-to-noise ratio (SNR).  相似文献   

16.
In this paper, we develop analytical tools for the performance analysis of coded, coherent communication systems on independent and identically distributed Nakagami-m fading channels with selection combining (SC) diversity. First, we derive an exact expression for the moment generation function (MGF) of the signal-to-noise ratio (SNR) of a code symbol at the output of the selection combiner. Next, based on Gauss-Chebyshev quadrature and Gauss-Laguerre quadrature rules, we propose a simple to compute, yet accurate, numerical solution for the pairwise error probability (PEP) of coded M-phase-shift keying (PSK) signals. Using the PEP expressions, we present the union bound-based bit-error performance of trellis-coded modulation schemes and turbo codes. Finally, we derive an exact expression for the computational cutoff rate of a coded system with M-PSK signaling and SC diversity, and show that the cutoff rate expression is a simple function of the MGF of the SNR at the output of the diversity combiner.  相似文献   

17.
This letter derives a bit-error probability (BEP) expression for quadrature differential phase-shift keying (QDPSK) signals with post-detection equal gain combining (EGC) in additive white Gaussian noise and slow frequency-nonselective arbitrarily correlated Nakagami-m fading channels. Unlike previous work, the effects of arbitrary values of fading severity parameter m and the arbitrary correlation between the L diversity channels are considered. The derived expression can be easily computed via numerical integration routines, and hence, can be usefully exploited in the performance evaluation of digital mobile radio systems  相似文献   

18.
We investigate the issue of pseudo noise (PN) code acquisition in single-carrier and multicarrier (MC) direct-sequence code-division multiple-access (DS-CDMA) systems, when the channel is modeled by frequency-selective Nakagami-m (1960) fading. The PN code acquisition performance of single-carrier and MC DS-CDMA systems is analyzed and compared when communicating over Nakagami-m fading channels under the hypothesis of multiple synchronous states (H/sub 1/ cells) in the uncertainty region of the PN code. In the context of MC DS-CDMA, the code acquisition performance is evaluated, when the correlator outputs of the subcarriers associated with the same phase of the local PN code replica are noncoherently combined by using equal gain combining (EGC) or selection combining (SC) schemes. The performance comparison of the above mentioned schemes shows that the code acquisition performance of the MC DS-CDMA scheme, especially when using the EGC scheme, is more robust, than that of single-carrier DS-CDMA schemes communicating over the multipath Nakagami-m fading channels encountered. However, our code acquisition performance comparison also shows that if the detection threshold was set inappropriately, the performance might be degraded, even if the channel fading becomes less severe.  相似文献   

19.
The effects of incoherently combining on dual-branch equal-gain combining (EGC) receivers in the presence of correlated, but not necessarily identical, Nakagami-m fading and additive white Gaussian noise are studied. Novel closed-form expressions for the moments of the output signal-to-noise ratio (SNR) are derived. Based on these expressions, the average output SNR and the amount of fading are obtained in closed-form. Moreover, the outage and the average bit error probability for binary and quadrature phase-shift keying are also studied using the moments-based approach. Numerical and computer simulation results clearly depict the effect of the carrier phase error, correlation coefficient, and fading severity on the EGC performance. An interesting finding is that higher values of the correlation coefficient results to lower irreducible error floors.  相似文献   

20.
Outage probability of diversity systems over generalized fading channels   总被引:1,自引:0,他引:1  
Outage probability is an important performance measure of communication systems operating over fading channels. Relying on a simple and accurate algorithm for the numerical inversion of the Laplace transforms of cumulative distribution functions, we develop a moment generating function-based numerical technique for the outage probability evaluation of maximal-ratio combining (MRC) and postdetection equal-gain combining (EGC) in generalized fading channels for which the fading in each diversity path need not be independent, identically distributed, nor even distributed according to the same family of distributions. The method is then extended to coherent EGC but only for the case of Nakagami-m fading channels. The mathematical formalism is illustrated by applying the method to some selected numerical examples of interest showing the impact of the power delay profile and the fading correlation on the outage probability of MRC and EGC systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号