首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
亚硝化-厌氧氨氧化组合工艺脱氮研究   总被引:7,自引:0,他引:7  
以高氨氮模拟废水为研究对象,对影响亚硝化-厌氧氨氧化组合工艺脱氮效果的几个因素(DO、pH、碱度、有机物浓度、NU4^+-N/NO2^-—N值)进行了考察,以期获得组合工艺的最佳运行方式。研究结果表明,在亚硝化温度为23~26℃,HRT=1d,进水NH4^+-N、TN浓度分别为350、420mg/L,ANH4^+-N/ANO2^--N值为0.8~1.33的条件下,组合工艺对NH4^+-N、TN的最高去除率分别为99.9%、90.8%,平均去除率分别为96%、76.1%。组合工艺的脱氮效率严重受限于亚硝化系统出水的NH4^+-N/NO2^--N值及其稳定性。  相似文献   

2.
《Planning》2022,(1):177-185
采用改进的升流式厌氧污泥床(UASB)反应器,在温度为30℃条件下,逐渐缩短HRT(水力停留时间)由9.6 d到0.9 d,经过160 d运行,成功培养出反硝化厌氧甲烷氧化与厌氧氨氧化耦合颗粒污泥,采用荧光原位杂交(FISH)分析、16S rRNA分析等方法研究颗粒结构和微生物组成特征。结果表明:耦合颗粒污泥的氨氮和亚硝酸盐的脱除速率分别为588.9和523 mg·L~(-1)·d~(-1),反硝化厌氧甲烷氧化活性达95.2 mg·L~(-1)·d~(-1),出水硝酸盐质量浓度小于40 mg·L~(-1),总氮去除率达92.5%;耦合颗粒污泥平均粒径为0.76 mm,与接种厌氧氨氧化颗粒污泥相比增加了1.46倍;反硝化厌氧甲烷氧化微生物主要位于耦合颗粒污泥外层,厌氧氨氧化菌位于耦合颗粒污泥内部;主要的厌氧氨氧化菌为Candidatus Brocadia,主要的反硝化厌氧甲烷氧化细菌为Candidatus Methylomirabilis,反硝化厌氧甲烷氧化古菌为Candidatus Methanoperedens。  相似文献   

3.
采用前置厌氧氨氧化生物滤池+亚硝化生物滤池的组合工艺,对高氨氮焦化废水进行脱氮研究,利用亚硝化生物滤池回流液中的亚硝酸盐氮与废水中的氨氮进行反应,以达到脱氮的目的,同时考察了HRT、回流比、DO浓度、p H值等参数对脱氮效果的影响。结果表明:当废水中的氨氮和COD浓度分别为(100~120)、(60~80)mg/L时,控制厌氧氨氧化段混合进水的p H值为8.0、HRT为30 h,亚硝化段出口DO浓度为0.6~1.0 mg/L,回流比为300%,对废水的脱氮率可稳定在80%左右。  相似文献   

4.
采用SBR反应器,以硝化污泥和厌氧氨氧化(ANAMMOX)颗粒污泥的混合污泥为接种污泥,以有机模拟废水为研究对象,进行了厌氧氨氧化生物脱氮工艺研究。结果表明,在控制温度为25℃,水力停留时间为12 d,pH值为7.2~8.5,进水NH4+-N为220 mg/L左右、NO2--N为138 mg/L左右、COD为294 mg/L的条件下成功启动了SBR反应器。在高氨氮、低有机物浓度的条件下,ANAMMOX菌和异养反硝化菌能够实现共存,且ANAMMOX菌仍能成为优势菌属,AN-AMMOX反应是反应器中的主导反应。镜检发现,优势菌尺寸约为1μm,呈圆形或椭圆形,成簇聚生,表面可观察到明显的漏斗状缺口,具有典型的厌氧氨氧化菌特征。污泥中形成了以厌氧氨氧化球状菌为主、其他杆状菌和丝状菌共存的微生物混培体。  相似文献   

5.
以人工配水为进水,接种某污水厂氧化沟工艺冬季的活性污泥,在(32±1)℃下快速启动一套容积为3.2 L的UASB/生物膜厌氧氨氧化反应器后,将加热水浴锅关闭,考察该反应器在常温(20~24℃)下的生物脱氮效果。结果显示,在常温下厌氧氨氧化反应仍然是该反应器内的主导反应,厌氧氨氧化菌活性很高,对NH+4-N、NO-2-N、TN的平均去除率分别为99.7%、98.0%和97.7%。  相似文献   

6.
短程硝化/厌氧氨氧化一步法自养脱氮中试研究   总被引:3,自引:0,他引:3  
一步法自养脱氮工艺在高氨氮废水处理中具有运行能耗低、不需外加碳源等优点。利用总容积为50 m3的SBR反应器处理高氨氮废水,成功实现了短程硝化/厌氧氨氧化一步法自养脱氮。反应器对不同氨氮浓度(350~4 300 mg/L)的废水均表现出良好的处理效果,对氨氮与总氮的平均去除率分别达到95%和90%以上。同时,还研究了反应器运行的主要影响因素、污泥粒径分布及微生物群落结构。结果表明,系统内形成了红色的厌氧氨氧化颗粒,且颗粒的比例随运行逐渐增加;而维持合理的溶解氧和氨氮浓度是实现高负荷脱氮的关键因素。  相似文献   

7.
常温下磷酸盐对城市污水厌氧氨氧化的影响   总被引:3,自引:0,他引:3  
在常温条件下采用生物滤池处理城市污水,考察了磷酸盐浓度对其厌氧氨氧化(Anammox)效能的影响.结果表明,磷酸盐对Anammox存在一定的可逆性抑制作用.当进水TP10 mg/L时,生物滤池中有乳白色沉积物形成,经X射线衍射晶相分析,其主要成分为MgNH4PO4·6H2O(MAP),MAP的物理阻滞作用影响了Anammox反应基质的正常传递,从而导致脱氮负荷的明显下降;通过终止投加磷酸盐、短期(2h)降低进水pH和反冲洗三个途径,可实现Anammox脱氮效能的迅速恢复.  相似文献   

8.
亚硝酸盐氮浓度对厌氧氨氧化反应的影响   总被引:7,自引:0,他引:7  
以生物膜滤池为厌氧氨氧化反应器,考察了进水中的亚硝酸盐氮浓度对总氮去除率的影响。结果显示,亚硝酸盐氮浓度对总氮去除率的影响较大,总氮去除率和pH值的变化幅度均随NO2^--N浓度的增加而增大;但NO2^--N浓度升高到一定程度时,若再进一步提高其浓度则对TN的去除率将随之下降,pH值的变化幅度也随之减小,高浓度NO2^--N会对厌氧氨氧化反应产生抑制作用。  相似文献   

9.
短程硝化/厌氧氨氧化联合工艺处理含氨废水的研究   总被引:1,自引:1,他引:1  
在SBR中接种普通好氧活性污泥,通过控制运行条件来实现短程硝化,同时提高厌氧生物转盘系统中厌氧氨氧化的氮负荷,使之与SBR出水中NO2--N的积累量相匹配,并将二者组合形成短程硝化/厌氧氨氧化自养脱氮工艺.处理含氨废水的试验结果表明:在SBR的进水NH4+-N为150~250 mg/L、温度为(28±2)℃、pH值为7~8、DO<1 mg/L的条件下,可实现稳定的短程硝化,NO2--N积累率达85%以上,NH4+-N负荷达0.129 kgN/(kgVSS·d),AOB和NOB的数量之比为103:1.将短程硝化出水加入NH4+-N后作为厌氧氨氧化反应器的进水,在(40±1)℃下可以达到自养脱氮的目的,对NH4+-N、NO2--N和TN的去除率分别达86%、97%和90%以上,TN容积负荷为0.488 kgN/(m3·d).  相似文献   

10.
金属离子对厌氧氨氧化反应器效能的影响   总被引:1,自引:0,他引:1  
以序批式生物膜反应器(SBBR)实现厌氧氨氧化,考察了铁、锰离子对厌氧氨氧化效能和细菌混培物生长的影响。经过180 d的培养发现,增加金属离子浓度可以提高反应器的脱氮效率,铁离子浓度为0.08 mmol/L或锰离子浓度达到0.05 mmol/L时,反应器对NH4+-N和NO2--N的去除率均稳定在95%以上;两反应器的VS值分别提高了1.33倍和1.57倍。表明添加金属离子可以促进厌氧氨氧化菌混培物的生长,这对于厌氧氨氧化工艺的运行有着重要的指导意义。  相似文献   

11.
为考察联氨作为自养脱氮系统菌群调节剂的可行性,以实验室内运行的HABRCANON反应器为试验装置,研究不同浓度联氨对自养脱氮系统脱氮效能和功能微生物的影响。结果表明,低浓度(1~4 mg/L)联氨可以抑制亚硝酸盐氧化菌(NOB)的活性,促进厌氧氨氧化菌(AnAOB)的活性,从而提高脱氮效能;高浓度(10 mg/L)联氨对好氧氨氧化菌(AOB)和NOB的抑制作用明显;停止投加联氨后,CANON系统的脱氮效能可迅速恢复;高浓度(10 mg/L)联氨对HABR全程自养脱氮工艺的影响是可逆的,但对NOB的抑制不可逆。对生物膜样品中的优势菌种进行分析发现,AOB和AnAOB为主要的功能微生物。采用低-高-低的联氨投加方式,可以有效抑制自养脱氮反应器内NOB的生长,保证自养脱氮系统的稳定运行。  相似文献   

12.
为解决在厌氧氨氧化反应进程中,厌氧氨氧化菌抗低温能力较差的问题,以聚乙烯醇-海藻酸钠为包埋剂包埋厌氧氨氧化污泥颗粒,采用UASB反应器研究了HRT对驯化过程中氨氮和亚硝态氮去除效果的影响,考察了温度变化对低温下包埋厌氧氨氧化菌颗粒脱氮效果的影响。结果表明,当进水氨氮浓度为50 mg/L,HRT为7 h时,投加15%包埋污泥后的UASB反应器具有较强的脱氮能力,对NH4+-N、NO2--N的去除率分别为95%和89%。相同条件下,水温从30℃阶梯式降低到14℃时,包埋厌氧氨氧化菌颗粒对NH4+-N的去除率从95%下降为70%,对NO2--N的去除率从89%下降为63%。在14℃下运行期间,调节水力停留时间为11 h可以提高脱氮效果,NH4+-N、NO2--N去除率分别在85%和79%左右。采用聚乙烯醇-海藻酸钠为包埋剂包埋厌氧氨氧化细菌,能大幅度提高低温胁迫下的脱氮性能。  相似文献   

13.
探索高效污水生物脱氮技术一直是污水处理领域的热点问题,而对具有将氨氮直接氧化为硝酸盐氮能力的全程氨氧化菌(Complete ammonia oxidizers, Comammox)的发现重新定义了人们对氮循环的认识。如何将全程氨氧化应用于污水处理厂的生物脱氮可能是未来研究需要重点解决的问题。为此,系统地阐述了Comammox菌的微生物学分类、生化特性和代谢机制,分析了Comammox菌与其他脱氮功能微生物的相互作用,总结了Comammox的影响因素。最后提出了基于Comammox-厌氧氨氧化协同实现城市污水主流脱氮的初步设想,并对Comammox的未来研究方向进行了展望。  相似文献   

14.
基于部分厌氧氨氧化的双泥龄复合脱氮工艺能实现自养脱氮和异养脱氮的耦合,在城市污水低成本高效脱氮方面表现出良好的应用潜力。为进一步探究该工艺的脱氮机理,对运行2年的中试反应器开展了脱氮途径解析与优化、主要脱氮功能菌活性测定以及微生物群落结构分析。结果表明,间歇曝气可以促进短程硝化和厌氧氨氧化过程的耦合,当曝气量为20 mL/min[DO为(0.18±0.03) mg/L]时,脱氮效率最高;厌氧氨氧化菌(AnAOB)主要分布在生物膜上,活性为44.60mg/(gVSS·d),检测到的AnAOB为Candidatus Brocadia,相对丰度为0.28%;氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)主要分布在悬浮污泥中,活性分别为61.53、86.95 mg/(gVSS·d),检测到的AOB和NOB分别为Nitrosomonas和Nitrospira,相对丰度分别为0.10%、2.10%。  相似文献   

15.
以模拟高氨氮废水为进水,研究了电气石对水溶液p H值、厌氧氨氧化菌活性及厌氧氨氧化反应动力学的影响。结果表明:电气石可有效调节水体p H值至弱碱性,并提高厌氧氨氧化菌的脱氢酶活性,当电气石投加量达到5 g/L时,AMX脱氢酶活性提高到0.68 mg TF/(L·h),较未投加电气石的对照组提高了65.85%。通过改变培养基的p H值发现,在电气石作用下,厌氧氨氧化菌活性不受p H值的影响,亚硝酸盐的vmax由1.16 kg N/(kg VSS·d)提高到2.16 kg N/(kg VSS·d),提高了86.2%;氨氮的vmax由0.92 kg N/(kg VSS·d)提高到1.85 kg N/(kg VSS·d)。亚硝酸盐和氨氮对厌氧氨氧化反应的KI也分别由6.52和376.51 mmol/L提高到54.02、835.32mmol/L。  相似文献   

16.
UASB反应器培养厌氧氨氧化菌的试验研究   总被引:2,自引:0,他引:2  
于UASB反应器中接种不同浓度的厌氧污泥来培养厌氧氨氧化菌,为深度处理低C/N值的畜禽粪尿提供厌氧氨氧化污泥.结果表明,低污泥浓度的1号反应器经过130 d的运行,在进水氨氮和亚硝态氮浓度均为150 mg/L、TN负荷为0.36 kg/(m<'>·d)的条件下,对TN的去除率在80%以上;高污泥浓度的2号反应器经过200 d的运行,在进水氨氮和亚硝态氮浓度均为340mg/L及TN负荷为0.80 kg/(m<'3>·d)的条件下,对TN的去除率为75%~85%.在稳定运行期1号和2号反应器去除的NH<,4><'+>-N和N02<,2><'->-N量与NO<,3><'->-N生成量之比分别为1:(1.1~1.2):(0.25~0.45)和1:(1.1~1.2):(0.30~0.40),出水pH值大于进水的.可见,接种污泥浓度高的反应器的抗冲击负荷能力强,更有利于厌氧氨氧化污泥的培养.  相似文献   

17.
通过逐步增加UASB反应器进水氮负荷[1.06~1.42 kg/(m3·d)]方式,考察了厌氧氨氧化(Anammox)工艺受到高盐度冲击后的恢复及运行特性。结果表明,经过156 d的运行,NH4+-N、NO2--N、TN去除率及总氮去除负荷(NRR)分别达到97.57%、96.40%、83.90%和1.19kg/(m3·d),这主要归功于Anammox污泥的活性得到了有效恢复[TN的比降解速率由0.131mg/(mgVSS·d)提高到0.302 mg/(mgVSS·d)];随着工艺运行效能的恢复,颗粒污泥的颜色由深褐色变为红褐色,平均粒径也随之增大,粒径>1.5 mm的占比最高,达到了68.25%;此外,胞外聚合物(EPS)含量由96.66 mg/g增大至147.98 mg/g,并且PN/PS值由4.86增大至13.34,厌氧氨氧化工艺可恢复到高效运行状态。  相似文献   

18.
19.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

20.
在常温、低基质浓度下运行MBBR反应器,考察了部分反硝化耦合厌氧氨氧化用于城市污水二级出水处理的可能性。在进水TN和COD浓度分别为25 mg/L和50 mg/L的条件下,经过180 d的运行,出水TN浓度为(3.87±0.69)mg/L,去除率可达(83.86±5.43)%,其中Anammox对TN的去除贡献达到(95±4)%。Anammox和部分反硝化活性分别稳定在(728.84±7.90)、(1 128.24±12.24)mg/(m2·d),表明部分反硝化菌和Anammox菌形成了良好的协同作用。高通量测序结果显示,经富集培养后,Candidatus Brocadia占比从0.62%增至5.61%,为Anammox菌的主导菌属;Thauera占比从0.004%增至3.74%,为部分反硝化菌的主导菌属。在常温和低基质浓度条件下,部分反硝化耦合厌氧氨氧化MBBR的稳定运行可为城市污水处理厂的提质增效提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号