首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mg2NiH4, with fast sorption kinetics, is considered to be a promising hydrogen storage material. However, its hydrogen desorption enthalpy is too high for practical applications. In this paper, first-principles calculations based on density functional theory (DFT) were performed to systematically study the effects of Al doping on dehydrogenation properties of Mg2NiH4, and the underlying dehydrogenation mechanism was investigated. The energetic calculations reveal that partial component substitution of Mg by Al results in a stabilization of the alloy Mg2Ni and a destabilization of the hydride Mg2NiH4, which significantly alters the hydrogen desorption enthalpy ΔHdes for the reaction Mg2NiH4 → Mg2Ni + 2H2. A desirable enthalpy value of ∼0.4 eV/H2 for application can be obtained for a doping level of x ≥ 0.35 in Mg2−xAlxNi alloy. The stability calculations by considering possible decompositions indicate that the Al-doped Mg2Ni and Mg2NiH4 exhibit thermodynamically unstable with respect to phase segregation, which explains well the experimental results that these doped materials are multiphase systems. The dehydrogenation reaction of Al-doped Mg2NiH4 is energetically favorable to perform from a metastable hydrogenated state to a multiphase dehydrogenated state composed of Mg2Ni and Mg3AlNi2 as well as NiAl intermetallics. Further analysis of density of states (DOS) suggests the improving of dehydrogenation properties of Al-doped Mg2NiH4 can be attributed to the weakened Mg-Ni and Ni-H interactions and the decreasing bonding electrons number below Fermi level. The mechanistic understanding gained from this study can be applied to the selection and optimization of dopants for designing better hydrogen storage materials.  相似文献   

2.
Nanostructuring and catalyzing are effective methods for improving the hydrogen storage properties of MgH2. In this work, transition-metal-carbides (TiC, ZrC and WC) are introduced into Mg–Ni alloy to enhance its hydrogen storage performance. 5 wt% transition-metal-carbide containing Mg95Ni5 (atomic ratio) nanocomposites are prepared by mechanical milling pretreatment followed by hydriding combustion synthesis and mechanical milling process, and the synergetic enhancement effects of Mg2NiH4 and transition-metal-carbides are investigated systematically. Due to the inductive effect of Mg2NiH4 and charge transfer effect between Mg/MgH2 and transition-metal-carbides, Mg95Ni5-5 wt.% transition-metal-carbide samples all exhibit excellent hydrogen storage kinetic at moderate temperature and start to release hydrogen around 216 °C. Among them, 2.5 wt% H2 (220 °C) and 4.7 wt% H2 (250 °C) can be released from the Mg95Ni5-5 wt.% TiC sample within 1800 s. The unique mosaic structure endows the Mg95Ni5-5 wt.% TiC with excellent structural stability, thus can reach 95% of saturated hydrogen capacity within 120 s even after 10 cycles of de-/hydrogenation at 275 °C. And the probable synergistic enhancement mechanism for hydrogenation and dehydrogenation is proposed.  相似文献   

3.
Carbon aerogel (CA) microspheres with highly crumpled graphene–like sheets surface and network internal structure have been successfully prepared by an inverse emulsion polymerization routine, subsequently ball milled with Mg powder to fabricate Mg@CA. The Mg change into MgH2 phases, decorating on the surface of the CA forming MgH2@CA microspheres composite after the hydrogenation process at 400 °C. The MgH2@CA microspheres composite displays MgH2–CA shell–core structure and shows enhanced hydrogenation and dehydrogenation rates. It can quickly uptake 6.2 wt% H2 within 5 min at 275 °C and release 4.9 wt% H2 within 100 min at 350 °C, and the apparent activation energy for the dehydrogenation is decreased to 114.8 kJ mol?1. The enhanced sorption kinetics of the composite is attributed to the effects of the in situ formed MgH2 NPs during the hydrogenation process and the presence of CA. The nanosized MgH2 could reduce the hydrogen diffusion distance, and the CA provides the sites for nucleation and prevents the grains from agglomerating. This novel method of in situ producing MgH2 NPs on zero–dimensional architecture can offer a new horizon for obtaining high performance materials in the hydrogen energy storage field.  相似文献   

4.
A Mg17Al12 alloy was synthesized via sintering, and the catalytic effects of V and V2O5 on the hydrogen (H2)-storage properties of this alloy were investigated. The results revealed that the hydrogenation/dehydrogenation temperature of Mg17Al12 decreased markedly and the reversible hydrogen storage properties improved with the addition of V or V2O5. For example, at 250 °C, the Mg17Al12 alloy underwent hydrogenation only and a hydrogen absorption capacity of 2.22 wt.% was realized. However, with the addition of V and V2O5, (i) reversible hydrogen absorption/desorption occurred, (ii) the hydrogen absorption capacity increased to 2.95 wt.% and 3.35 wt.%, and (iii) the hydrogenation/dehydrogenation enthalpy of the Mg17Al12alloy decreased from 65.7/83.1 kJ·mol?1 to 62.6/69.3 kJ·mol?1 and 59.9/68.1 kJ·mol?1, respectively.  相似文献   

5.
Magnesium-based hydrogen storage materials (MgH2) are promising hydrogen carrier due to the high gravimetric hydrogen density; however, the undesirable thermodynamic stability and slow kinetics restrict its utilization. In this work, we assist the de/hydrogenation of MgH2 via in situ formed additives from the conversion of an MgNi2 alloy upon de/hydrogenation. The MgH2–16.7 wt%MgNi2 composite was synthesized by ball milling of Mg powder and MgNi2 alloy followed by a hydrogen combustion synthesis method, where most of the Mg converted to MgH2, and the others reacted with the MgNi2 generating Mg2NiH4, which produced in situ Mg2Ni during dehydrogenation. Results showed that the Mg2Ni and Mg2NiH4 could induce hydrogen absorption and desorption of the MgH2, that it absorbed 2.5 wt% H2 at 473 K, much higher than that of pure Mg, and the dehydrogenation capacity increased by 2.6 wt% at 573 K. Besides, the initial dehydrogenation temperature of the composite under the promotion of Mg2NiH4 decreased greatly by 100 K, whereas it is 623 K for MgH2. Furthermore, benefiting from the catalyst effect of Mg2NiH4 during dehydrogenation, the apparent activation energy of the composite reduced to 73.2 kJ mol−1 H2 from 129.5 kJ mol−1 H2.  相似文献   

6.
The structures and properties of hydrogen storage alloy Mg2Ni, of aluminum and silver substituted alloys Mg2−xMxNi (M = Al and Ag, x = 0.16667), and of their hydrides Mg2NiH4, Mg2−xMxNiH4 (M = Al and Ag, x = 0.125) have been calculated from first-principles. Results show that the primitive cell sizes of the intermetallic alloys and hydrides were reduced by substitution of Mg with Al or Ag. Also, the interaction of Ni–Ni was weakened by the substitution. A strong covalent interaction between H and Ni atoms forms tetrahedral NiH4 units in Mg2NiH4. The NiH4 unit near the Al/Ag atom became tripod-like NiH3 in Mg2−xMxNiH4 (M = Al, Ag), indicating that the hydrogen storage capacity was decreased by the substitution. The calculated enthalpies of hydrogenation for Mg2Ni, Mg2−xAlxNi and Mg2−xAgxNi are −65.14, −51.56 and −53.63 kJ/mol H2, respectively, implying that the substitution destabilizes the hydrides. Therefore, the substitution is an effective technique for improving the thermodynamic behavior of hydrogenation/dehydrogenation in magnesium-based hydrogen storage materials.  相似文献   

7.
We propose a simple strategy to effectively improve the hydrogenation and dehydrogenation kinetics of Mg based hydrogen storage alloys. We designed and prepared an Mg91.9Ni4.3Y3.8 alloy consisting of a large quantity of long-period stacking ordered (LPSO) phases. A type of highly dispersed multiphase nanostructure, which can markedly promote the de/hydrogenation kinetics, has been obtained utilizing the decomposition of LPSO phases at first a few of hydrogenation reactions. The fine structures of LPSO phases and the microstructural evolutions of the alloy during hydrogenation and dehydrogenation reactions were in detail characterized by means of transmission electron microscopy (TEM). The LPSO phases transformed to MgH2, Mg2NiH4, and YH3 after the first hydrogenation. The highly dispersed nanostructure at macro and micro (nano) scale range remains even after several de/hydrogenation cycles. The alloy shows excellent hydrogen storage properties and its reversible hydrogen absorption/desorption capacities are about 5.8 wt% at 300 °C. Particularly, the alloy exhibits very fast dehydrogenation kinetics. The dehydrogenated sample can release approximately 5 wt% hydrogen at 300 °C within 200 s and 5.5 wt% within 600 s. We elucidate the structural mechanism of the alloy with outstanding hydrogen storage performance.  相似文献   

8.
The as-milled (20 h) and cast Mg90Al10 alloys were prepared by mechanical milling and vacuum induction melting, respectively. The differences in the phase composition, apparent morphology and microstructure of the alloys were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission microscope (HRTEM). The activation performance, hydrogen absorption/desorption rate and pressure-composition-isotherm (P-C-T) curves of the pure Mg, as-milled (20 h) and cast Mg90Al10 alloys were tested using a Sieverts apparatus. The results show that the alloys both are nanocrystalline structure and consisted of the main phase of Mg phase and the second phase of Al phase or Mg17Al12 phase. Compared to pure Mg, the thermodynamics and kinetics of the as-milled (20 h) and cast Mg90Al10 alloys are improved in different degree. The hydrogen desorption enthalpy (ΔHde) of the as-milled (20 h) and cast Mg90Al10 alloys are 75.43 and 72.76 kJ mol?1 H2, which are smaller than 100.67 kJ mol?1 H2 of pure Mg. And the dehydrogenation activation energy (Ede(a)) decreases from 172.61 kJ mol?1 H2 of pure Mg to 163.59 and 157.65 kJ mol?1 H2 of the as-milled (20 h) and cast Mg90Al10 alloys, respectively. However, the activation performance and the hydrogen absorption capacity have the varying degree to drop.  相似文献   

9.
On the basis of modification of transition metals on Mg-Al hydrogen storage alloys, Mg15Al5Ni alloy with Ni content of 5 wt% has been prepared by high energy ball mill. The results show that Ni particles uniformly distribute on the surface of particles, while several Ni particles are embedded inside alloy particles. These Ni particles tend to redistribute after hydrogenation. The phase composition analysis reveals the formation of stable Al3Ni2 phase in Ni-modified alloy after hydrogenation. The hydrogen absorption performance of Mg15Al5Ni alloy has been improved by introducing Ni, which can absorb 4.36 wt% hydrogen within 5 min at 350 °C. Meanwhile, the activation properties of Mg15Al5Ni alloy can be obviously deteriorated due to the addition of Ni. However, uniformly distributed Al3Ni2 nanocrystals with grain sizes around 10 nm hinder grain growth of hydrides, ameliorating hydrogenation kinetics of Mg15Al5Ni alloy. Besides, the modified effect of Ni on hydrogenation kinetics of Mg15Al5Ni alloy has been also discussed in this work.  相似文献   

10.
Mg (200 nm) and LaNi5 (25 nm) nanoparticles were produced by the hydrogen plasma-metal reaction (HPMR) method, respectively. Mg–5 wt.% LaNi5 nanocomposite was prepared by mixing these nanoparticles ultrasonically. During the hydrogenation/dehydrogenation cycle, Mg–LaNi5 transformed into Mg–Mg2Ni–LaH3 nanocomposite. Mg particles broke into smaller particles of about 80 nm due to the formation of Mg2Ni. The nanocomposite showed superior hydrogen sorption kinetics. It could absorb 3.5 wt.% H2 in less than 5 min at 473 K, and the storage capacity was as high as 6.7 wt.% at 673 K. The nanocomposite could release 5.8 wt.% H2 in less than 10 min at 623 K and 3.0 wt.% H2 in 16 min at 573 K. The apparent activation energy for hydrogenation was calculated to be 26.3 kJ mol−1. The high sorption kinetics was explained by the nanostructure, catalysis of Mg2Ni and LaH3 nanoparticles, and the size reduction effect of Mg2Ni formation.  相似文献   

11.
The dehydrogenation reaction pathway of a 0.91 (0.62LiBH4-0.38NaBH4)-0.09Ni mixture in the temperature range of 25–650 °C in flowing Ar and the cycling stability in H2 are presented. No H2 is released immediately after melting at 225 °C. The major dehydrogenation occurs above 350 °C. Adding nano-sized Ni reduces the dehydrogenation peak temperatures by 20–25 °C, leading to three decomposition steps where Ni4B3 and Li1.2Ni2.5B2 are found in the major dehydrogenation products for the 1st and the 3rd step; whilst the Ni-free mixture decomposes through a two-step decomposition pathway. A total of 8.1 wt% of hydrogen release from the 0.91 (0.62LiBH4-0.38NaBH4)-0.09Ni mixture is achieved at 650 °C in Ar. This mixture has a poor hydrogen cycling stability as its reversible hydrogen content decreases from 5.1 wt% to 1.1 wt% and 0.6 wt% during three complete desorption-absorption-cycles. However, the addition of nano-sized Ni facilitates the reformation of LiBH4.  相似文献   

12.
This paper presents improving the hydrogen absorption and desorption of Mg(In) solid solution alloy through doped with CeF3. A nanocomposite of Mg0.95In0.05-5 wt% CeF3 was prepared by mechanical ball milling. The microstructures were systematically investigated by X-ray diffraction, scanning electron microscopy, scanning transmission electron microscopy. And the hydrogen storage properties were evaluated by isothermal hydrogen absorption and desorption, and pressure-composition-isothermal measurements in a temperature range of 230 °C–320 °C. The mechanism of hydrogen absorption and desorption of Mg0.95In0.05 solid solution is changed by the addition of CeF3. Mg0.95In0.05-5 wt% CeF3 nanocomposite transforms to MgH2, MgF2 and intermetallic compounds of MgIn and CeIn3 by hydrogenation. Upon dehydrogenation, MgH2 reacts with the intermetallic compounds of MgIn and CeIn3 forming a pseudo-ternary Mg(In, Ce) solid solution, which is a fully reversible reaction with a reversible hydrogen capacity~4.0 wt%. The symbiotic nanostructured CeIn3 impedes the agglomeration of MgIn compound, thus improving the dispersibility of element In, and finally improving the reversibility of hydrogen absorption and desorption of Mg(In) solution alloy. For Mg0.95In0.05-5 wt% CeF3 nanocomposite, the dehydriding enthalpy is reduced to about 66.1 ± 3.2 kJ⋅mol−1⋅H2, and the apparent activation energy of dehydrogenation is significantly lowered to 71.9 ± 10.0 kJ⋅mol−1⋅H2, a reduction of ~73 kJ⋅mol−1⋅H2 relative to that for Mg0.95In0.05 solid solution. As a result, Mg0.95In0.05-5 wt% CeF3 nanocomposite can release ~57% H2 in 10 min at 260 °C. The improvements of hydrogen absorption and desorption properties are mainly attributed to the reversible phase transition of Mg(In, Ce) solid solution combing with the multiphase nanostructure.  相似文献   

13.
Study on the synergistic catalytic effect of the SrTiO3 and Ni on the improvement of the hydrogen storage properties of the MgH2 system has been carried out. The composites have been prepared using ball milling method and comparisons on the hydrogen storage properties of the MgH2 – Ni and MgH2 – SrTiO3 composites have been presented. The MgH2 – 10 wt% SrTiO3 – 5 wt% Ni composite is found to has a decomposition temperature of 260 °C with a total decomposition capacity of 6 wt% of hydrogen. The composite is able to absorb 6.1 wt% of hydrogen in 1.3 min (320 °C, 27 atm of hydrogen). At 150 °C, the composite is able to absorb 2.9 wt% of hydrogen in 10 min under the pressure of 27 atm of hydrogen. The composite has successfully released 6.1 wt% of hydrogen in 13.1 min with a total dehydrogenation of 6.6 wt% of hydrogen (320 °C). The apparent activation energy, Ea, for decomposition of SrTiO3-doped MgH2 reduced from 109.0 kJ/mol to 98.6 kJ/mol after the addition of 5 wt% Ni. The formation of Mg2Ni and Mg2NiH4 as the active species help to boost the performance of the hydrogen storage properties of the MgH2 system. Observation of the scanning electron microscopy images suggested the catalytic role of the SrTiO3 additive is based on the modification of composite microstructure.  相似文献   

14.
The AB-type Ti1.1Fe0.9Ni0.1 (Mg0 for short) and Ti1.09Mg0.01Fe0.9Ni0.1 (Mg0.01 for short) alloys were fabricated by vacuum induction melting and mechanical milling. The effects of partly substituting Ti with Mg and/or mechanical milling on the structure, morphology, gaseous thermodynamics and kinetics, and electrochemical performances were studied. The results reveal that the as-cast Mg0 alloy contains the main phase TiFe and a small number of TiNi3 and Ti2Ni phases. Substituting Ti with Mg and/or mechanical milling results in the disappearance of the secondary phases. The discharge capacities of the as-cast Mg0 and Mg0.01 alloys are 12.6 and 8.8 mAh g?1, which increase to 52.6 and 80.4 mAh g?1 after 5 h of mechanical milling. By milling the as-cast alloy powders with carbonyl nickel powders, they are greatly enhanced to 191.6 mAh g?1 for the Mg0+7.5 wt% Ni alloy and 205.9 mAh g?1 for the Mg0.01+5 wt% Ni alloy at the current density of 60 mA g?1, respectively. The values of dehydrogenation enthalpy (ΔHdes) and dehydrogenation activation energy (Edes(a)) are very small, meaning that the thermal stability and the desorption kinetics of the hydrides are not the key influence factors for the discharge capacity. The reduction of the particle size and the generation of the new surfaces without oxide layers have slight improvements on the discharge capacity, while the enhancement of the charge transfer ability of the surfaces of the alloy particles can significantly promote the electrochemical reaction of the alloy electrodes.  相似文献   

15.
Ternary Mg86Y10Ni4 alloy was successfully prepared by vacuum induction melting and subsequent melt-spinning technique. The phase composition and microstructure of the melt-spun and hydrogenated samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy measurements. The melt-spun alloy had an amorphous structure, and it transformed into nanocrystalline during the first hydrogenation process. The hydrogenated sample was composed of MgH2, Mg2NiH4, YH2, and a small amount of YH3. The hydrogen absorption/desorption kinetics and thermodynamics were measured by Sievert's apparatus at various temperatures. It was found that the melt-spun Mg86Y10Ni4 alloy could be fully activated after five hydrogenation and dehydrogenation cycles at 380 °C, and it exhibited a reversible gravimetric hydrogen storage capacity of about 5.3 wt%. The enhanced hydrogen sorption kinetics during the first few cycles can be attributed to the increased specific surface caused by the pulverization and cracking of the alloy particles. The activation energy for dehydrogenation reaction was determined to be 67 kJ/mol and 71 kJ/mol by using Arrhenius equation and Kissinger equation respectively. The thermodynamics of the sample was also evaluated by pressure–composition–isotherms, and the results shown that the enthalpy and entropy changes of Mg/MgH2 transformation in the Mg86Y10Ni4 alloy were slightly higher than that of pure Mg/MgH2.  相似文献   

16.
Herein, we demonstrate the successful preparation of a novel complex transition metal oxide (TiVO3.5) by oxidizing a solid-solution MXene (Ti0.5V0.5)3C2 at 300 °C and its high activity as a catalyst precursor in the hydrogen storage reaction of MgH2. The prepared TiVO3.5 inherits the layered morphology of its MXene precursor, but the layer surface becomes very coarse because of the presence of numerous nanoparticles. Adding a minor amount of TiVO3.5 remarkably reduces the dehydrogenation and hydrogenation temperatures of MgH2 and enhances the reaction kinetics. The 10 wt% TiVO3.5-containing sample exhibits optimal hydrogen storage properties, as it desorbs approximately 5.0 wt% H2 in 10 min at 250 °C and re-absorbs 3.9 wt% H2 in 5 s at 100 °C and under 50 bar of hydrogen pressure. The apparent activation energy is calculated to be approximately 62.4 kJ/mol for the MgH2-10 wt% TiVO3.5 sample, representing a 59% reduction in comparison with pristine MgH2 (153.8 kJ/mol), which reasonably explains the remarkably reduced dehydrogenation operating temperature. Metallic Ti and V are detected after ball milling with MgH2; they are uniformly dispersed on the MgH2 matrix and act as actual catalytic species for the improvement of the hydrogen storage properties of MgH2.  相似文献   

17.
The Mg-based hydrogen storage alloy with multiple platforms is successfully prepared by ball milling Co powder and Mg-RE-Ni precursor alloy, and its hydrogen storage behavior was investigated in detail by XRD, EDS, TEM, PCI, and DSC methods. The ball-milled alloy consists of the main phase Mg, the catalytic phases Mg2Ni, Mg2Co as well as a small amount of Mg12Ce, and convert into the MgH2–CeH2.73-Mg2NiH4–Mg2CoH5 composite after hydrogenation. The composite has three PCI platforms corresponding to the reversible de/hydrogenation reaction of Mg/MgH2, Mg2Ni/Mg2NiH4 and Mg6Co2H11/Mg2CoH5. Among them, the transformation between Mg2Ni and Mg2NiH4 triggers the “spill-over” effect which promote the decomposition of MgH2 phases and enhances the hydrogen desorption kinetics. Meanwhile, the conversion of the Mg6Co2H11 to Mg2CoH5 phase induces the “chain reaction” effect, which leads to preferential nucleation of Mg phase and improves the hydrogen absorption kinetics. Therefore, the Mg-RE-Ni-Co alloy has a double improvement on hydrogen absorption and desorption kinetics. Concretely, the alloy has an optimal hydrogen absorption temperature of 200 °C, at which it can absorb 5.5 wt. % H2 within 40 s. Under the conditions, the capacity of absorption almost reaches the maximum reversible value (about 5.6 wt. %). Besides, the alloy has a dehydrogenation activation energy of 67.9 kJ/mol and can desorb 5.0 wt. % H2 within 60 min at the temperature of 260 °C.  相似文献   

18.
In order to reduce the obstacle influence of coarse Mg2Ni phase on hydrogen absorption kinetics in Mg–Ni alloys, aluminum was doped and Mg77Ni23-xAlx (x = 0, 3, 6, 9) alloys were prepared. The results show that AlNi phase was formed when Al was added, the size of primary Mg2Ni phase decreases with increasing Al content till 6 at.%, while primary Mg2Ni phase was diminished and primary Mg phase was formed when Al content increased to 9 at.%. The initial hydrogenation rates of Mg77Ni23-xAlx alloys were increased, which is resulted from the refined primary Mg2Ni and the catalytic AlNi phase. More importantly, the hydrogenation rates and capacities were significantly improved at 150 °C, especially for the Mg77Ni17Al6 alloy. The apparent activation energy of the Mg77Ni17Al6 alloy for hydrogenation was reduced to 73.68 kJ/mol from 102.27 kJ/mol of the Mg77Ni23 alloy. Its enthalpy changes for hydrogenation at low and high platforms are 72.3 kJ/mol and 53.9 kJ/mol, respectively. The multiple channels and short distance for hydrogen atoms diffusion provided by refined primary Mg2Ni phase, the solid dissolution of Al in Mg2Ni lattice, and catalytic effect of AlNi on hydrogenation, leading to the improvement of the hydrogen storage properties.  相似文献   

19.
Aiming to gain insight on the hydrogen storage properties of Mg-based alloys, partial hydrogenation and hydrogen pressure related de-/hydrogenation kinetics of Mg–Ni–La alloys have been investigated. The results indicate that the phase boundaries, such as Mg/Mg2Ni and Mg/Mg17La2, distributed within the eutectics can act as preferential nucleation sites for β-MgH2 and apparently promote the hydrogenation process. For bulk alloy, it is observed that the hydrogenation region gradually grows from the fine Mg–Ni–La eutectic to primary Mg region with the extension of reaction time. After high-energy ball milling, the nanocrystalline powders with crystallite size of 12~20 nm exhibit ameliorated hydrogen absorption/desorption performance, which can absorb 2.58 wt% H2 at 368 K within 50 min and begin to desorb hydrogen from ~508 K. On the other side, variation of hydrogen pressure induced driving force significantly affects the reaction kinetics. As the hydrogenation/dehydrogenation driving forces increase, the hydrogen absorption/desorption kinetics is markedly accelerated. The dehydrogenation mechanisms have also been revealed by fitting different theoretical kinetics models, which demonstrate that the rate-limiting steps change obviously with the variation of driving forces.  相似文献   

20.
In this work, the Mg90Y1.5Ce1.5Ni7 sample is successfully prepared by combining the vacuum induction melting and the mechanical milling. The phase composition and microstructure characteristics are studied by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy measurements. The hydrogenated sample is composed of MgH2, Mg2NiH4, CeH2.73 phases, whereas only the MgH2 and Mg2NiH4 phases are decomposed during dehydrogenation. The hydrogen storage properties of Mg90Y1.5Ce1.5Ni7 samples are measured by semi-automatic Sievert type apparatus. It is found that the samples could be fully activated within three cycles of absorption and dehydrogenation, with a reversible hydrogen storage capacity of about 5.6 wt%. Also, the “optimal hydrogenation temperature” is reduced to 200 °C, and the dehydrogenation activation energy is calculated to be 68.2 kJ/mol and 65.8 kJ/mol by using the Arrhenius and Kissinger equations, respectively. This work provides a scientific approach to promote the practical application of Mg-based alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号