首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A photocatalyst composed of graphite-like carbon nitride (g-C3N4) and TiO2 was fabricated by a simple method to calcine the mixture of melamine and TiO2 precursor. The photocatalyst has enhanced photoactivity for hydrogen evolution from water. Characterization by XRD, FTIR, SEM and elemental analysis showed that the crystal structure and morphologies of composites were affected by the amount of melamine in the composite. The UV–Vis characterization displayed that the optical absorption range of g-C3N4/TiO2 hybrid was broadened with a synergistic effect. The photoactivity for H2 evolution was shown that the best result obtained from the composite with 67 wt% melamine has about 5 times improvement compared with bare TiO2 or pure g-C3N4. The enhanced photoactivity might be related with the favorable structure resulted from heat-treatment temperature, and the content of g-C3N4 participating in wide optical absorption, separation and transportation of electronic-holes, as well as morphology of composite.  相似文献   

2.
Well dispersed CdS quantum dots were successfully grown in-situ on g-C3N4 nanosheets through a solvothermal method involving dimethyl sulfoxide. The resultant CdS–C3N4 nanocomposites exhibit remarkably higher efficiency for photocatalytic hydrogen evolution under visible light irradiation as compared to pure g-C3N4. The optimal composite with 12 wt% CdS showed a hydrogen evolution rate of 4.494 mmol h−1 g−1, which is more than 115 times higher than that of pure g-C3N4. The enhanced photocatalytic activity induced by the in-situ grown CdS quantum dots is attributed to the interfacial transfer of photogenerated electrons and holes between g-C3N4 and CdS, which leads to effective charge separation on both parts.  相似文献   

3.
A novel visible-light-driven photocatalyst CaIn2S4 was synthesized using a facile hydrothermal method followed by a post-calcination process. The influence of the calcination temperature and time on the activities of the photocatalyst was investigated. CaIn2S4 exhibits optical absorption predominantly in visible region with an optical band gap of 1.76 eV. Considerable activity for hydrogen evolution from pure water was observed without any sacrificial agents or cocatalysts under visible light irradiation. The maximum hydrogen evolution rate achieved was 30.92 μmol g−1 h−1 without obvious deactivation of the photocatalytic activity for four consecutive runs of 32 h.  相似文献   

4.
A highly active photocatalyst based on g-C3N4 coated SrTiO3 has been synthesized simply by decomposing urea in the presence of SrTiO3 at 400 °C. The catalyst demonstrates a high H2 production rate ∼440 μmol h−1/g catalyst in aqueous solution under visible light irradiation, which is much higher than conventional anion doped SrTiO3 or physical mixtures of g-C3N4 and SrTiO3. The improved photocatalytic activity can be ascribed to the close interfacial connections between g-C3N4 and SrTiO3 where photo-generated electron and holes are effectively separated. The newly synthesized catalyst also exhibited a stable performance in the repeated experiments.  相似文献   

5.
The CdS/TiO2 composites were synthesized using titanate nanotubes (TiO2NTs) with different pore diameters as the precursor by simple ion change and followed by sulfurization process at a moderate temperature. Some of results obtained from XRD, TEM, BET, UV–vis and PL analysis confirmed that cadmium sulfide nanoparticles (CdSNPs) incorporated into the titanium dioxide nanotubes. The photocatalytic production of H2 was remarkably enhanced when CdS nanoparticles was incorporated into TiO2NTs. The apparent quantum yield for hydrogen production reached about 43.4% under visible light around λ = 420 nm. The high activity might be attributed to the following reasons: (1) the quantum size effect and homogeneous distribution of CdSNPs; (2) the synergetic effects between CdS particles and TiO2NTs, viz., the potential gradient at the interface between CdSNPs and TiO2NTs.  相似文献   

6.
Boron doped nanodiamonds (BDND) were coupled with graphitic carbon nitride (g-C3N4) nanosheets to form a heterojunction via a facile pyrolysis approach. The BDND@g-C3N4 heterojunction exhibits enhanced visible-light absorbance, improved charge generation/separation efficiency and prolonged lifetime of carriers, which lead to the enhanced photocatalytic activities for the hydrogen evolution and organic pollution under visible-light irradiation. The optimal H2 evolution rate and apparent quantum efficiency at 420 nm of the BDND@g-C3N4 heterojunction is 96.3 μmol h−1 and 6.91%, which is about 5 and 2 times higher than those of pristine g-C3N4 nanosheets (18.2 μmol h−1 and 3.92%). No obvious decrease in hydrogen generation rate is observed in the recycling experiment due to the high photo-stabilization of the BDND@g-C3N4 composite. The degradation kinetic rate constant of organic pollution of the BDND@g-C3N4 structure is 0.1075 min−1, which is 3 times higher compared to pristine g-C3N4. This work may provide a promising route to construct highly efficient non-metal photocatalysts for hydrogen evolution and organic pollution degradation under visible light irradiation.  相似文献   

7.
Photocatalyst powders of SrTi1−xMoxO3 and Sr1−2xNa2xTi1−xMoxO3 were prepared by spray pyrolysis for hydrogen evolution for the first time from aqueous methanol solution under visible light irradiation. The co-doping of Mo6+/Na+ ions resulted in increase of BET surface area and pore volume, and formation of unique morphology with wrinkled, furrowed and porous surface, without significant distortion of lattice structure of host material. The hydrogen evolution rate of Sr1−2xNa2xTi1−xMoxO3 photocatalyst was enhanced up to 1115.8 μmol g−1 h−1 with an induction period of 1 h under visible light irradiation, which was 1.5 times higher than that of SrTi1−xMoxO3. The co-dopant Na+ ion contributed to the charge balance in the host material by compromising the excess positive charge of Mo6+, which was effective for enhancing the hydrogen evolution rate. The optimum composition of photocatalyst corresponding to the maximum hydrogen evolution rate was Sr1−2xNa2xTi1−xMoxO3 (x = 0.004).  相似文献   

8.
Photocatalysts of Na1−xLaxTa1−xCrxO3 and NaTa1−xCrxO3 were prepared by spray pyrolysis from aqueous and polymeric precursor solution. Apart from the contribution of La3+ ions co-doped into NaTa1−xCrxO3 on the BET surface area and the surface morphology by preventing crystal growth, this co-doping contributed to the increased Cr3+ concentration by partially tuning the electron configuration from A+B5+O3 to (A+A′3+)2+(B5+B′3+)4+O3 in the lattice of the photocatalyst. Na1−xLaxTa1−xCrxO3 prepared from polymeric precursor solution reduced the induction period to 33% and enhanced the hydrogen evolution rate 5.6-fold to 1467.5 μmol g−1 h−1 compared with the equivalent values of NaTa1−xCrxO3 prepared from aqueous precursor. The optimum amounts of dopant and additives comprising the polymeric precursor to maximize the hydrogen evolution rate were x = 0.003 and 300 mol%, respectively.  相似文献   

9.
Reduced graphene oxide (rGO) supported g-C3N4-TiO2 ternary hybrid layered photocatalyst was prepared via ultrasound assisted simple wet impregnation method with different mass ratios of g-C3N4 to TiO2. The synthesized composite was investigated by various characterization techniques, such as XRD, FTIR, Raman Spectra, FE-SEM, HR-TEM, UV vis DRS Spectra, XPS Spectra and PL Spectra. The optical band gap of g-C3N4-TiO2/rGO nanocomposite was found to be red shifted to 2.56 eV from 2.70 eV for bare g-C3N4. It was found that g-C3N4 and TiO2 in a mass ratio of 70:30 in the g-C3N4-TiO2/rGO nanocomposite, exhibits the highest hydrogen production activity of 23,143 μmol g?1h?1 through photocatalytic water splitting. The observed hydrogen production rate from glycerol-water mixture using g-C3N4-TiO2/rGO was found to be 78 and 2.5 times higher than g-C3N4 (296 μmol g?1 h?1) and TiO2 (11,954 μmol g?1 h?1), respectively. A direct contact between TiO2 and rGO in the g-C3N4-TiO2/rGO nanocomposite produces an additional 10,500 μmol g?1h?1 of hydrogen in 4 h of photocatalytic reaction than the direct contact between g-C3N4 and rGO. The enhanced photocatalytic hydrogen production activity of the resultant nanocomposite can be ascribed to the increased visible light absorption and an effective separation of photogenerated electron-hole pairs at the interface of g-C3N4-TiO2/rGO nanocomposite. The effective separation and transportation of photogenerated charge carriers in the presence of rGO sheet was further confirmed by a significant quenching of photoluminescence intensity of the g-C3N4-TiO2/rGO nanocomposite. The photocatalytic hydrogen production rate reported in this work is significantly higher than the previously reported work on g-C3N4 and TiO2 based photocatalysts.  相似文献   

10.
Visible-light-driven CdS/HKLBT photocatalyst was prepared by ion exchange of Cd2+ in aqueous Cd(CH3COO)2 solutions, then by sulfurization in aqueous N2H8S solutions. The characterization by XRD, SEM, HRTEM and XRS revealed that CdS nanoparticles exist both on the surface and in the interlayer of HKLBT. The composite CdS/HKLBT showed higher photocatalytic activity for hydrogen evolution (504.2 μmol/h) than that of pure CdS (187.3 μmol/h), even than that of 0.5 wt%Pt/CdS (496.0 μmol/h) under visible light (λ > 400 nm) in the presence of lactic acid as sacrificial reagent. The enhancement of photocatalytic activity is attributed to the strong contact between CdS and HKLBT in CdS/HKLBT as well as the effective separation of photogenerated carrier in CdS through electron rapid injection into CB of HKLBT.  相似文献   

11.
SrTiO3:Cr/Ta powders were prepared by spray pyrolysis from polymeric precursors. Effects of the amount of co-dopant and additives on the photocatalytic activity for hydrogen evolution from aqueous methanol solution under visible light irradiation (λ > 415 nm) were investigated. For the photocatalyst prepared by spray pyrolysis from polymeric precursor, the hydrogen evolution rate was increased by a factor of ∼100 and induction period was decreased by a factor of 8 compared with a photocatalyst prepared by solid state reaction. These enhancements result from increased roughness of surface, and the compositional uniformity which are intrinsic characteristics of spray pyrolysis. In addition, photocatalyst prepared by spray pyrolysis from polymeric precursor have large BET surface area and small amount of Cr6+ ion which is responsible for long induction period. It should be noted that the reduction of Cr6+ ion was achieved without hydrogen reduction process.  相似文献   

12.
In this paper, g-C3N4/KNbO3 heterojunction composites were prepared and used to water splitting for hydrogen production under simulated sunlight. The morphology and structure of the composites were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-Ray spectroscopy and high resolution transmission electron microscopy. The g-C3N4/KNbO3 composites exhibited the better photocatalytic performance for water splitting more than 2 and 1.8 times of the pure g-C3N4 and KNbO3. Meanwhile, the Pt nanoparticles as a co-catalyst were deposited on the surface of g-C3N4/KNbO3 as Pt-g-C3N4/KNbO3 composites for water splitting which enhanced photocatalytic properties almost 74 and 14 times than that of Pt-KNbO3 and Pt-g-C3N4. Such a significant improvement of the photocatalytic activity was mainly ascribed to the photoinduced electron-holes in the interface of g-C3N4/KNbO3 composites rapid separation and the co-catalysis effect of Pt nanoparticles. These present study work may provide a useful method for water splitting using an effective composites photocatalysts.  相似文献   

13.
以TiO2颗粒和三聚氰胺为原料,采用高温煅烧法制备g-C3N4/TiO2复合光催化材料,研究其对仿生生态系统中磺胺类抗生素的去除效果。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)、紫外可见分光光度计(UV-vis DRS)对g-C3N4/TiO2进行表征,并研究在可见光条件下g-C3N4/TiO2对溶液中磺胺甲恶唑(SMX)的光催化降解效果。结果表明,g-C3N4/TiO2具有良好的光催化活性,在可见光照射下,当g-C3N4/TiO2投加量为0.2 g·L-1时,对初始质量浓度为200 μg·L-1的SMX的去除率可达84.3%。在相同条件下,而g-C3N4和TiO2只能分别去除21.0%和16.0%的SMX,同时在仿生系统中12.37 g·m-2 g-C3N4/TiO2可以去除95.35%的SMX。通过质谱分析推测,SMX可能的降解路径分别为S—N键断裂、C—N键断裂、S—C键断裂、SMX的羟基化和SMX上氨基的硝化反应,两种可能的中间产物分别为对氨基苯磺酰胺和3-氨基-5-甲基异恶唑。  相似文献   

14.
Chemically modified g-C3N4 for the photocatalytic H2 evolution from water was explored. Bulk g-C3N4 was treated in hot HNO3 aqueous solution to obtain the oxidized material (o-g-C3N4), tested in water containing glucose as model water-soluble sacrificial biomass, using Pt as co-catalyst, under simulated solar light. The behaviour of o-g-C3N4 was studied in relation with catalyst amount, Pt loading, glucose concentration. Results showed that H2 production is favoured by increasing glucose concentration up to 0.1 M and Pt loading up to 3 wt%, and it resulted strongly enhanced using small amount of o-g-C3N4 (0.25 g L?1). o-g-C3N4 possesses superior photocatalytic activity (~26-fold higher) compared to pristine g-C3N4, with H2 evolution further improved by ultrasound-assisted exfoliation and evolution rates up to ca. 1370 μmol h?1 per gram of catalyst, with excellent reproducibility (RSD < 6%, n = 3). Significant production was observed also in river water and seawater, with results far better (up to ca. 2500 μmol g?1 h?1) compared to commercial AEROXIDE® P25 TiO2 under natural solar light.  相似文献   

15.
Tri-doped photocatalyst, SrTiO3:Ni/Ta/La, was prepared by spray pyrolysis from aqueous and polymeric precursor solutions. The third dopant, La3+, contributed to the BET surface area and porous morphology by preventing crystal growth, and increased the Ni2+/Ni3+ ratio by affecting the electron configuration in the lattice structure, which is closely related to the hydrogen evolution rate. The hydrogen evolution rate of the tri-doped photocatalyst, SrTiO3:Ni(0.2 mol%)/Ta(0.4 mol%)/La(0.3 mol%), was increased by about 60%–895.2 μmol g−1 h−1 from the value of 561.2 μmol g−1 h−1 for the co-doped photocatalyst, SrTiO3:Ni(0.2 mol%)/Ta(0.4 mol%), and was further enhanced to 2305.7 μmol g−1 h−1 when a polymeric precursor was used instead of an aqueous precursor in spray pyrolysis. The optimum additive content for polymeric precursor solution was 300 mol%.  相似文献   

16.
Aiming at the enhancement of photocatalytic activity for hydrogen evolution over ZnIn2S4, different transition metals (Cr, Mn, Fe, Co) are doped into the lattices of ZnIn2S4 to narrow the band gap. The doped ZnIn2S4 is characterized by XRD, Raman, UV-vis spectra, photoluminescence spectra, SEM and XPS techniques. The photocatalytic evaluation shows that Mn-doped ZnIn2S4 performs photocatalytic activity 20% higher than undoped ZnIn2S4, while Cr-, Fe-, and Co-doped ZnIn2S4 perform poorer activities in an order of Cr > Fe > Co. Based on the combined characterization results, the band structures of doped ZnIn2S4 are schematically depicted, which illustrates the different effects of transition-metal doping on the photocatalytic activity for hydrogen evolution. For Mn-doped ZnIn2S4, the enhancement of photocatalytic activity could be due to narrowed band gap induced by Mn doping. However, for Cr-, Fe-, and Co-doped ZnIn2S4, the suppressed photocatalytic activities should be attributed to the dopant-related impurity energy levels localizing the charge carriers or acting as non-radiative recombination centers for photoexcited electrons and holes. Hence, this study indicates that it is of great importance to make the in-depth investigation on the effects of band structures on the photocatalytic activity, especially for the doped semiconducting photocatalysts.  相似文献   

17.
NiS2 nanoparticles as noble metal-free co-catalysts were deposited onto the CdLa2S4 nanocrystals through a hydrothermal process. The loading of NiS2 co-catalyst resulted in remarkable enhancement for H2 production over the CdLa2S4 photocatalyst under visible light irradiation. The optimal hybrid photocatalyst with 2 wt% NiS2 loading exhibited a H2 production rate of 2.5 mmol h−1 g−1, which was more than 3 times higher than that of the pristine CdLa2S4 photocatalyst. The promoted photocatalytic H2 production by NiS2-loading is attributed to the enhanced separation of photogenerated electrons and holes as well as the activation effect of NiS2 for H2 evolution.  相似文献   

18.
Large-surface-area mesoporous Nb2O5 microspheres were successfully grown in-situ on the surface of g-C3N4 nanosheets via a facile solvothermal process with the aid of Pluronic P123 as a structure-directing agent. The resultant g-C3N4/Nb2O5 nanocomposites exhibited enhanced photocatalytic activity for H2 evolution from water splitting under visible light irradiation as compared to pure g-C3N4. The optimal composite with 38.1 wt% Nb2O5 showed a hydrogen evolution rate of 1710.04 μmol h?1 g?1, which is 4.7 times higher than that of pure g-C3N4. The enhanced photocatalytic activity could be attributed to the sufficient contact interface in the heterostructure and large specific surface area, which leads to effective charge separation between g-C3N4 and Nb2O5.  相似文献   

19.
SrTiO3:Rh/Ta powder was prepared by spray pyrolysis from polymeric precursors containing citric acid and ethylene glycol. Co-doping Ta into SrTiO3:Rh increased the presence of Rh3+ in the host material. The retention of balanced charges by the substitution of two Ti4+ ions in the host material by one ion each of Rh3+ and Ta5+ enhanced hydrogen evolution from aqueous methanol solution under visible light irradiation (λ > 415 nm) by 3.5 times (to 531 μmol h−1) and reduced the induction period by 50% (to 1 h), when compared with SrTiO3:Rh. Thorough mixing of the multi-component spray pyrolysis precursor solution resulted in highly dispersed Rh ions and porous photocatalyst particles, which showed enhanced hydrogen evolution rate.  相似文献   

20.
Well-defined SnNb2O6 nanoplates are synthesized here by a facile template-free solvothermal route in a mixed solvent of water and ethanol without an organic surfactant. The synthesized nanoplates have widths ranging from 200 to 400 nm and thicknesses in a range of 20–30 nm. The nanoplates were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV–Vis spectroscopy, Raman spectrometry, and by the Brunauer–Emmett–Teller method. The variation of the lattice parameters and the optical properties of the nanoplates were discussed in detail based on the crystal and electronic structure. The SnNb2O6 nanoplates exhibited greatly enhanced photocatalytic activity in terms of the reduction of water for H2 generation under visible light irradiation as compared to the same compound prepared by a solid–state reaction method. This was mainly attributed to its higher surface area and extremely high two-dimensional anisotropy, which provided a short migration distance along the thickness direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号