首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
xFe2O3·(100 − x)[Bi2O3·CdO] system with 0 ≤ x ≤ 50 mol% was prepared and investigated by X-ray diffraction, density, FT-IR and Raman spectroscopies. The XRD patterns confirm the formation of a vitreous structure for x < 35 mol% Fe2O3. The evolution of density and molar volume with the addition and increasing of iron content indicates structural changes in the structure of Bi2O3·CdO glass matrix. The FT-IR spectrum of the glass matrix reveals a structure realized from BiO3 pyramidal and BiO6 octahedral units. With the addition of iron the structure proposed by the glass matrix is changing by the appearance of FeO4 units. Also the existence of FeO6 units cannot be excluded. The Raman spectra suggest a structure build from BiO6 octahedral units. By Raman scattering the presence of structural units characteristic to Fe2O3 was not directly observed but the evolution of the spectra is dependent of the iron content.  相似文献   

2.
In this study, we tried to lower the sintering temperature of Ba0.6Sr0.4TiO3 (BST) ceramics by several kinds of adding methods of Bi2O3, CuO and CuBi2O4 additives. The effects of different adding methods on the microstructures and the dielectric properties of BST ceramics have been studied. In the all additive systems, the single addition of CuBi2O4 was the most effective way for lowering the sintering temperature of BST. When CuBi2O4 of 0.6 mol% was mixed with starting BST powders and sintered at 1100 °C, the derived ceramics demonstrated dense microstructure with a low dielectric constant (? = 4240), low dielectric loss (tan δ = 0.0058), high tunability (Tun = 38.3%) and high Q value (Q = 251). It was noteworthy that the sintering temperature was significantly lowered by 350 °C compared with no-additive system, and the derived ceramics maintained the excellent microwave dielectric properties corresponding to pure BST.  相似文献   

3.
The effect of CaO-SiO2-B2O3 (CSB) glass addition on the sintering temperature and dielectric properties of BaxSmyTi7O20 ceramics has been investigated using X-ray diffraction, scanning electron microscopy and differential thermal analysis. The CSB glass starts to melt at about 970 °C, and a small amount of CSB glass addition to BaxSmyTi7O20 ceramics can greatly decrease the sintering temperature from about 1350 to about 1260 °C, which is attributed to the formation of liquid phase. It is found that the dielectric properties of BaxSmyTi7O20 ceramics are dependent on the amount of CSB glass and the microstructures of sintered samples. The product with 5 wt% CSB glass sintered at 1260 °C is optimal in these samples based on the microstructure and the properties of sintering product, when the major phases of this material are BaSm2Ti4O12 and BaTi4O9. The material possesses excellent dielectric properties: ?r = 61, tan δ = 1.5 × 10−4 at 10 GHz, temperature coefficient of dielectric constant is −75 × 10−6 °C−1.  相似文献   

4.
Ba0.68Sr0.32TiO3 ceramics of perovskite structure are prepared by solid state reaction method with addition of x mol% Sm2O3, and their dielectric properties are investigated. It is found that, integrating with the lattice parameters and tolerance factor t, there is an alternation of substitution preference of Sm3+ for the host cations in perovskite lattice. Owing to the replacement of Sm3+ ions for Ba2+ ions in the A site, Tc rises with the increase of Sm2O3 doping when the doping content is below 0.1 mol%; meanwhile, when the content is more than 0.1 mol%, Sm3+ ions tend to occupy the B-site, causing a drop of Tc. Owing to the modifications of Sm3+ doping, dielectric constant, dissipation factor and temperature stability of dissipation factor are influenced remarkably, making it a superior candidate for environment-friendly applications. Moreover, the creation of oxygen vacancies controls the dielectric constant when the addition is above 0.1 mol%, so the dielectric constant decreases with increasing of samarium.  相似文献   

5.
The varistor properties of the ZnO-Pr6O11-CoO-Cr2O3-Y2O3-In2O3 ceramics were investigated for different concentrations of In2O3. The increase of In2O3 concentration slightly increased the sintered density (5.60-5.63 g/cm3) and slightly decreased the average grain size (3.4-2.9 μm). The breakdown field increased from 6023 to 14822 V/cm with increasing concentration of In2O3. The nonlinear coefficient increased from 17.6 to 44.6 for up to 0.005 mol%, whereas the further doping caused it to decrease to 36.8. In2O3 acted as an acceptor due to the donor concentration, which decreases in the range of 1.02 × 1017 to 0.24 × 1017/cm3 with increasing concentration of In2O3.  相似文献   

6.
The effects of B2O3 addition, as a sintering agent, on the sintering behavior, microstructure and microwave dielectric properties of the 11Li2O-3Nb2O5-12TiO2 (LNT) ceramics have been investigated. With the low-level doping of B2O3 (≤2 wt.%), the sintering temperature of the LNT ceramic could be effectively reduced to 900 °C. The B2O3-doped LNT ceramics are also composed of Li2TiO3ss and “M-phase” phases. No other phase could be observed in the 0.5-2 wt.% B2O3-doped ceramics sintered at 840-920 °C. The addition of B2O3 induced no obvious degradation in the microwave dielectric properties but increased the τf values. Typically, the 0.5 wt.% B2O3-doped ceramics sintered at 900 °C have better microwave dielectric properties of ?r = 49.2, Q × f = 8839 GHz, τf = 57.6 ppm/°C, which suggest that the ceramics could be applied in multilayer microwave devices requiring low sintering temperatures.  相似文献   

7.
In order to obtain CO2-absorbents to eliminate CO2 concentration locally, Bi2O3-La2O3 mixed powders were prepared by mechanical alloying (MA) method using a planetary ball-milling machine. CO2-absorption and desorption properties were checked by TG-DTA for the obtained powder samples. As a result, the sample shown by (Bi2O3)1−x(La2O3)x [x≤0.50] was found to form α-Bi2O3-solid solution with repeated CO2-adsorption and desorption around 400- 500 °C. Absorbed and desorbed CO2 contents varied with MA time: the 72 h MA’ed sample had a larger CO2 content than the 24 h MA’ed sample. The performance depended on the sample composition, and (Bi2O3)0.70(La2O3)0.30 was found to have the highest performance in the present system.  相似文献   

8.
Y2O3 doped lead-free piezoelectric ceramics (Bi0.5Na0.5)0.94Ba0.06TiO3 (0-0.7 wt%) were synthesized by the conventional solid state reaction method, and the effect of Y2O3 addition on the structure and electrical properties was investigated. X-ray diffraction shows that Y2O3 diffuses into the lattice of (Bi0.5Na0.5)0.94Ba0.06TiO3 to form a solid solution with a pure perovskite structure. The temperature dependence of dielectric constant of Y2O3 doped samples under various frequencies indicates obvious relaxor characteristics different from typical relaxor ferroelectric and the mechanism of the relaxor behavior was discussed. The optimum piezoelectric properties of piezoelectric constant d33 = 137 pC/N and the electromechanical coupling factor kp = 0.30 are obtained at 0.5% and 0.1% Y2O3 addition, respectively.  相似文献   

9.
Binary TiO2-P2O5 glasses with 69 mol% and 76 mol% TiO2 were prepared and converted into glass ceramics by heat-treatments. XRD measurements show that the main crystalline phases precipitated in the glass ceramics are anatase-type TiO2 crystals or (TiO)2P2O7 crystals, depending on the concentration of titanium constituent. Photocatalytic activities of the glass ceramics were evaluated by the decomposition of methylene blue (MB) and measuring the water contact angle. It is found that the glass ceramics containing anatase crystals exhibit both photocatalytic oxidation activity and highly photo-induced hydrophilicity under UV irradiation with intensity of 1.0 mW/cm2.  相似文献   

10.
The 0.83ZnAl2O4-0.17TiO2 (ZAT) ceramics were synthesized by solid state ceramic route. The effect of 27B2O3-35Bi2O3-6SiO2-32ZnO (BBSZ) glass on the microwave dielectric properties of ZAT was investigated. The crystal structure and the microstructure of the ceramic-glass composites were studied by X-ray diffraction and scanning electron microscopic techniques. The low frequency dielectric loss was measured at 1 MHz. The dielectric properties of the sintered samples were measured in the microwave frequency range by the resonance method. Addition of 0.2 wt% of BBSZ improved the dielectric properties with quality factor (Qu × f) > 120,000 GHz, temperature coefficient of resonant frequency (τf) = −7.3 ppm/°C and dielectric constant (?r) = 11.7. Addition of 10 wt% of BBSZ lowered the sintering temperature to about 950 °C with Qu × f > 10,000 GHz, ?r = 10 and τf = −23 ppm/°C. The reactivity of 10 wt% BBSZ added ZAT with silver was also studied. The results show that ZAT doped with suitable amount of BBSZ glass is a possible material for low-temperature co-fired ceramic (LTCC) application.  相似文献   

11.
Mass density, glass transition temperature and ionic conductivity are measured in xLi2O-(40 − x)Na2O-50B2O3-10Bi2O3 and xK2O-(40 − x)Na2O-50B2O3-10Bi2O3 glass systems with 0 ≤ x ≤ 40 mol%. The strength of the mixed alkali effect in Tg, dc electrical conductivity and activation energy has been determined in each glass system. The magnitudes of the mixed alkali effect in Tg for the mixed Li/Na glass system are much smaller than those in the mixed K/Na glasses. The impact of mixed alkali effect on dc electrical conductivity in mixed Li/Na glass system is more pronounced than in the K/Na glass system. The results are explained based on dynamic structure model.  相似文献   

12.
(1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 (0.1 ≤ x ≤ 0.85) composites are prepared by mixing 1150 °C-calcined BaTi4O9 with 1150 °C-calcined Ba(Zn1/3Ta2/3)O3 powders. The crystal structure, microwave dielectric properties and sinterabilites of the (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics have been investigated. X-ray diffraction patterns reveal that BaTi4O9, ordered and disordered Ba(Zn1/3Ta2/3)O3 phases exist independently over the whole compositional range. The sintering temperatures of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics are about 1240 - 1320 °C and obviously lower than those of Ba(Zn1/3Ta2/3)O3 ceramics. The dielectric constants (?r) and the temperature coefficient of resonant frequency (τf) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of BaTi4O9 content. Nevertheless, the bulk densities and the quality values (Q × f) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of Ba(Zn1/3Ta2/3)O3 content. The results are attributed to the higher density and quality value of Ba(Zn1/3Ta2/3)O3 ceramics, the better grain growth, and the densification of sintered specimens added a small BaTi4O9 content. The (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramic with x = 0.1 sintered at 1320 °C exhibits a ?r value of 31.5, a maximum Q × f value of 68500 GHz and a minimum τf value of 4.1 ppm/°C.  相似文献   

13.
We describe the synthesis and characterization of new intergrowth Aurivillius related phases, Bi4LnNb3O15 (Ln = La, Pr, Nd) and Bi4LaTa3O15. Both powder X-ray diffraction and electron microscopy investigations show that the compounds adopt orthorhombic structures with the cell parameters a ∼ 5.5 Å, b ∼ 5.5 Å and c ∼ 20.9 Å, suggesting an ordered intergrowth structure that consists of n = 1 [Bi2NbO6] and n = 2 [Bi2LnNb2O9]+ Aurivillius fragments which are stacked alternately along the c-axis. The oxides do not show a second harmonic generation (SHG) response toward 1064 nm laser radiation; they do not show a ferroelectric-paraelectric transition either between 30 and 900 °C in dielectric measurements, indicating a centrosymmetric structure. Optical absorption studies show that the intergrowth phases possess considerably smaller band gaps than the parent Nb2O5 and Ta2O5.  相似文献   

14.
The microwave dielectric properties and the microstructures of Nd(Co1/2Ti1/2)O3 ceramics prepared by conventional solid-state route have been studied. The prepared Nd(Co1/2Ti1/2)O3 exhibited a mixture of Co and Ti showing 1:1 order in the B-site. It is found that low-level doping of B2O3 (up to 0.75 wt.%) can significantly improve the density and dielectric properties of Nd(Co1/2Ti1/2)O3 ceramics. Nd(Co1/2Ti1/2)O3 ceramics with additives could be sintered to a theoretical density higher than 98.5% at 1320 °C. Second phases were not observed at the level of 0.25-0.75 wt.% B2O3 addition. The temperature coefficient of resonant frequency (τf) was not significantly affected, while the dielectric constants (?r) and the unloaded quality factors Q were effectively promoted by B2O3 addition. At 1320 °C/4 h, Nd(Co1/2Ti1/2)O3 ceramics with 0.75 wt.% B2O3 addition possesses a dielectric constant (?r) of 27.2, a Q × f value of 153,000 GHz (at 9 GHz) and a temperature coefficient of resonant frequency (τf) of 0 ppm/°C. The B2O3-doped Nd(Co1/2Ti1/2)O3 ceramics can find applications in microwave devices requiring low sintering temperature.  相似文献   

15.
ZnO-based varistor ceramics doped with fixed Y2O3 and different Sm2O3 have been prepared by the conventional solid-state reaction route, and the phase composition, microstructure and electrical properties have been investigated by XRD, SEM and a V–I source/measure unit. The XRD analyses show the presence of primary phase ZnO and some minor secondary phases. Doping appropriate contents of Sm2O3 decrease the leakage current and enhance nonlinearity characteristics of ZnO-based varistor ceramics markedly. The varistor ceramics with 0.25 mol% Sm2O3 sintered at 1,125 °C for 1 h exhibit reasonable electrical properties with the breakdown field of 446.4 V/mm, the nonlinear coefficient of 65.8 and the leakage current of 2.36 μA/cm2. The results illustrate that doping Y2O3 and Sm2O3 may be a promising route for the production of ZnO-based varistor ceramics with good electrical properties.  相似文献   

16.
(1 − x) Sr0.4Ba0.6Nb2O6xBi2O3 (0.00 ≤ x ≤ 0.20) ceramics were prepared by conventional solid-state reaction method. The microstructure, dielectric properties and PE hysteresis loops of ceramics were investigated via X-ray diffraction, scanning electron microscope (SEM), Agilent E4980A and modified Sawyer–Tower circuit, respectively. XRD results showed the obtained ceramics were of tungsten bronze structure, and second phase Sr0.4Ba0.6Bi2Nb2O9 was detected at high doping concentration. SEM results showed suitable Bi2O3 addition could reduce the sintering temperature and assist the grain growth. The dielectric characteristics exhibited diffuse phase transition phenomena, which were verified by linear fitting of the modified Curie–Weiss law. Besides, the relaxor ferroelectric properties of ceramics followed the Vogel–Fulcher relationship well. The PE hysteresis loops became slimmer with increasing the Bi2O3 addition, leading to a gradually decrease in both remnant polarization (Pr) and coercive field (Ec).  相似文献   

17.
Subsolidus equilibria in air in the RuO2-Bi2O3-ZrO2 system were studied with the aim of obtaining information on possible interactions between a Bi2Ru2O7-based cathode and a ZrO2-based solid electrolyte in solid-oxide fuel cells (SOFCs). No ternary compound was found in the system. The tie lines are between Bi2Ru2O7 and ZrO2, and between Bi2Ru2O7 and gamma-Bi2O3—the ZrO2 stabilised Bi2O3 phase, stable at temperatures over 710 °C.  相似文献   

18.
Glass systems of the composition xLi2O-20ZnO-(80 − x)B2O3 where (x = 5, 10, 15, 20, 25 and 30 mol%) have been prepared by melt quenching technique. Elastic properties, 11B MAS-NMR and IR spectroscopic studies have been employed to study the structure of Li2O-ZnO-B2O3 glasses. Elastic properties have been investigated using sound velocity measurements at 10 MHz. Elastic moduli reveal trends in their compositional dependence. The bulk modulus and shear modulus increases monotonically with increase of BO4 units, which increase the dimensionality of the network. 11B MAS-NMR and IR spectra show characteristic features of borate network and compositional dependent trends as a function of Li2O/ZnO concentration. The results are discussed in view of borate network and the dual structural role of Zn2+ ions. The results indicate that the Zn2+ are likely to occupy network-forming positions in this glass system.  相似文献   

19.
0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr0.3Ti0.7)O3(PNN-PZT) ceramics with different concentration of xFe2O3 doping (where x = 0.0, 0.8, 1.2, 1.6 mol%) were synthesized by the conventional solid state sintering technique. X-ray diffraction analysis reveals that all specimens are a pure perovskite phase without pyrochlore phase. The density and grain size of Fe-doped ceramics tend to increase slightly with increasing concentration of Fe2O3. Comparing with the undoped ceramics, the piezoelectric, ferroelectric and dielectric properties of the Fe-doped PNN-PZT specimens are significantly improved. Properties of the piezoelectric constant as high as d33 ~ 956 pC/N, the electromechanical coupling factor kp ~ 0.74, and the dielectric constant εr ~ 6095 are achieved for the specimen with 1.2 mol% Fe2O3 doping sintered at 1200 °C for 2 h.  相似文献   

20.
Variations of microstructures in Bi2O3-doped yttria stabilized zirconia (YSZ) with conventional furnace and microwave sintering were investigated in this work. The results demonstrated that a small amount of addition of Bi2O3 was effective in reducing the sintering temperature of YSZ from 1500 °C to 1200 °C and promoting the densification rate of the ceramics. It is interesting that microwave sintering is found to suppress the evaporation rate of Bi2O3 and formation of the monoclinic-ZrO2 or other amorphous phases. Compared to conventional furnace sintering, significant improvement in density of Bi2O3-doped YSZ at lower sintering temperatures with microwave sintering was observed. Rapid heating rate and short sintering time for restricting serious segregation at grain boundary were observed as well. Employing microwave sintering at the same sintered condition, the density of a specimen was evidently increased by 4.59% in comparison to the specimen sintered with a conventional furnace sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号