首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recently developed process of microsphere preparation, named droplet-freezing process is introduced in this paper. The PLLA microspheres were fabricated by the droplet-freezing process, the diameter and porosity of the microspheres were measured, and the micro-morphologies of the microspheres were characterized by scanning electron microscopy (SEM). The formation process of microspheres was achieved by two steps: first, after droplets dropped off the delivery tube, they became approximately spherical in the air under the effect of the surface tension; second, droplets dropped into liquid condensate and maintained the spherical shape, and were frozen during the free settling process. Experimental results indicated that the microspheres fabricated by the droplet-freezing process have uniform diameters and the diameter can be controlled properly, along with the increase of the PLLA concentration, the size of microspheres increases, but the porosity of the microspheres decreases. The microspheres with high porosity can be obtained with a low concentration of the PLLA solution. SEM analysis revealed that the surfaces and interiors of the microsphere contain plentiful and interconnected micro pores. The microspheres are hopeful to be applied in bone tissue engineering.  相似文献   

2.
Water-repellent surfaces were fabricated on blend sheets of poly(l-lactic acid)/poly(butylene succinate) with various blending ratios by the successive processing; (1) plasma etching, followed by (2) the hydrophobic plasma polymer coating. Rough morphology was formed effectively on the mosaic structured surface of blend sheets via the oxidative etching, and advanced water repellency was achieved after the thin membrane coating was synthesized with a hydrophobic plasma polymer coating by use of hexamethyldisiloxane or hexamethyldisilazane. High water repellency is expressed through the columnar hair-like structured model, where the air-water surface interaction in the voids is taken into account.  相似文献   

3.
The effect of 1,3:2,4-dibenzylidene-d-sorbitol (DBS) on the crystallization behaviors of poly(l-lactic acid) (PLLA) was examined in this study. A small amount (≤4 wt%) of DBS altered the crystallization rate and regime transition temperature of PLLA. First, the addition of DBS and the formation of self-assembled DBS nanofibrils both increased the nucleation rate of PLLA. Second, the curves of the spherulitic growth rate versus the crystallization temperature of PLLA were discontinuous and did not show the typical bell-shaped behavior for all samples. We found that the change in crystal structures (α′-to-α) affected the regime transition temperatures, which led to the discontinuity. The regime transition (regime II–III) temperatures of PLLA slightly decreased as the DBS amounts were increased. This indicates that the more regular structure (regime II) of PLLA formed at lower temperatures when more DBS was added. In addition, the spherulitic growth rate of PLLA was found to be mainly influenced by the fold surface free energy. When the DBS amounts were increased, the increase in the fold surface free energy decreased the growth rate of PLLA. Nonetheless, the Avrami exponent, n, was not significantly changed because the spherulitic growth geometry and nucleation mechanism of PLLA were basically the same. The Avrami plot also shows that the secondary crystallization began earlier due to the formation of DBS nanofibrils for the samples containing higher DBS amounts.  相似文献   

4.
As a natural protein, wool keratin was used to improve the cell affinity of poly(l-lactic acid) (PLLA). Small keratin particles were prepared from keratin solution by the spray-drying process. Keratin particles were blended with PLLA/1,4-dioxane solution and paraffin micro-spheres which were used as progens. After the mixture was molded and dried, the paraffin micro-spheres were removed by cyclohexane. PLLA/keratin scaffolds with controlled pore size and well interconnectivity were fabricated. Keratin releasing rate was detected by Fourier transform infrared (FTIR) after the scaffold was immersed into PBS up to 4 weeks. The surface chemical structure was examined by X-ray photoelectron spectroscope (XPS). The results suggested that the keratin could be held into the scaffold which was expected to improve the interactions between osteoblasts and the polymeric scaffolds.  相似文献   

5.
Porous scaffolds play important roles in tissue engineering. Biodegradable synthetic polymers, such as poly(l-lactic acid) (PLLA), frequently are used in the preparation of porous scaffolds. Pretreating the surface of a PLLA porous scaffold is required to increase its wettability for smooth cell seeding due to the hydrophobic property of the scaffold's surface. In this study, a simple coating method was used to modify the surface of the PLLA sponges. The coating method included three steps: filling the PLLA sponge pores with collagen aqueous solution, centrifuging to remove excess collagen, and, finally, freeze-drying. Compared with the uncoated PLLA sponge, the collagen-coated PLLA sponge demonstrated both improved wettability and high water absorption. Cells were smoothly seeded in the collagen-coated PLLA sponges by dropping a cell suspension solution onto the sponges. Cells adhered to the collagen-coated sponge and were distributed homogeneously throughout the collagen-coated PLLA sponge.  相似文献   

6.
The present study is devoted to the effect of fiber surface-treatment on the interfacial property of biocomposites based on poly(l-lactic acid) (PLLA) and ramie fabric. Ramie fiber is used as reinforced material because it's lowest water absorption among sisal, jute, kenaf and ramie fiber. Fiber surface-treatment can increase the water absorption of natural fibers. SEM images show that PLLA biocomposites with treated ramie fabric exhibit better interfacial adhesion character. DMA results show that the storage modulus of PLLA biocomposites with treated ramie increase compared to neat PLLA and PLLA biocomposites with untreated ramie. Unexpectedly, fiber surface-treatment can cause an accelerated decline in mechanical properties of PLLA biocomposites after UV-irradiation hydrothermal aging. Finally, GPC results show that there is no obvious decline in the molecular weight of PLLA. The main reason for this decline is the interfacial destructive effect induced by the water absorption of ramie fiber.  相似文献   

7.
This study investigates the effect of operative parameters of shear controlled orientation in injection molding (SCORIM) on poly(l-lactic acid), PLLA, and compared with conventional injection molded (CIM) PLLA. The in situ structure development was carried out with systematic variations of mold temperature and shearing time. The energy at break and maximum stress of all the SCORIM processed PLLA are higher than the CIM processed PLLA without sacrificing the modulus. The overall increments in maximum stress and energy at break were 134% and 641%, respectively. Significant enhancements in ductility for the SCORIM processed PLLA are shown to be a consequence of preferential molecular orientation of large fraction of core. The orientation of core is more pronounced at low mold temperature conditions and was increased with increasing shearing time at both the low and high mold temperatures. The processing–morphology and morphology–mechanical property relationships were then established.  相似文献   

8.
A series of biodegradable polymers were prepared by solution coprecipitation of poly(para-dioxanone) (PPDO) and poly(d,l-lactide) (PDLLA) in various blend ratios. Samples were compression molded into bars using a platen vulcanizing press. The in vitro hydrolytic degradation of PPDO/PDLLA blends was studied by examining the changes in weight, water absorption, tensile strength, breaking elongation, thermal properties, and morphology of the blends in phosphate buffered saline (PBS; pH 7.44) at 37 °C for 8 weeks. During the hydrolytic degradation, the weight loss and water absorption increased significantly for all samples, whereas the hydrolysis rate varied with the blend composition. The weight loss of PPDO/PDLLA 80/20, which showed the smallest degradation rate, was lower than that of pure PPDO for almost all of the hydrolytic degradation period. The results showed that the blend composition played an important role in determining the degradation behaviors of blends.  相似文献   

9.
Mechanical reinforcement of environmentally friendly composite, composed of kenaf fibers as reinforcement and poly-l-lactic acid (PLLA) resin as matrix, was investigated. The stress on the incorporated fibers in the composite under transverse load was monitored in situ and non-destructively using X-ray diffraction. The outer applied stress was found to be well transferred to the incorporated kenaf fibers through the PLLA matrix, which suggests a strong interaction between the fiber and the matrix. In addition, it was also revealed that a silane-coupling treatment to the kenaf fiber was effective for the improvement of interfacial adhesion.  相似文献   

10.
The control of pore size and structure, drug release capacity, and biodegradation of scaffolds is of importance for bone tissue engineering. In this study, a technique combining polymer coagulation, cold compression molding, salt particulate leaching and drug coating method was developed to fabricate poly (ethylene glycol)/dexamethasone coated porous poly-d-l-lactide/nano-hydroxyapatite (PDLLA/nano-HAp) scaffolds. These scaffolds possess homogenous pore networks with high porosity (66-82%) and controllable pore size (200-300 μm). The compressive moduli and strength of the scaffolds after incorporation of nano-HAp were improved by 50% and 20%, respectively. The surface hydrophilicity of the scaffold was significantly improved by poly (ethylene glycol)/dexamethasone coating and nano-HAp addition, leading to a higher initial drug loading amount. The results showed that the drug release behavior of the scaffolds after 35-day immersion in water could be adjusted by varying the porosity level and by incorporation of 20 wt.% of nano-HAp.  相似文献   

11.
This study reports the preparation and physical properties of biodegradable nanocomposites fabricated using poly(l-lactide) (PLLA) and magnesium/aluminum layered double hydroxide (MgAl-LDH). The MgAl-LDH with molar ratio of Mg/Al = 2 were synthesized by the co-precipitation method. In order to improve the chemical compatibility between PLLA and LDH, the surface of LDH was organically-modified by polylactide with carboxyl end group (PLA–COOH) using ion-exchange process. Then, the PLLA/LDH nanocomposites were prepared by solution intercalation of PLLA into the galleries of PLA–COOH modified LDH (P-LDH) in tetrahydrofuran solution. Both X-ray diffraction data and Transmission electron microscopy images of PLLA/P-LDH nanocomposites indicate that the P-LDHs are randomly dispersed and exfoliated into the PLLA matrix. Mechanical properties of the fabricated 1.2 wt.% PLLA/P-LDH nanocomposites show significant enhancements in the storage modulus when compared to that of neat PLLA. Adding more P-LDH into PLLA matrix induced a decrease in the storage modulus of PLLA/P-LDH nanocomposites, probably due to the excessive content of PLA–COOH moleculars with low mechanical properties. The thermal stability and degradation activation energies of the PLLA and PLLA/P-LDH nanocomposites can also be discussed.  相似文献   

12.
To mimic the nano-fibrous structure of the natural extracellular matrix, a nano composite scaffold of poly(l-lactic acid)/hydroxyapatite(PLLA/HAP) was fabricated by a thermally induced phase separation method. The characterization of the composite scaffold showed that the scaffold had a nano-fibrous PLLA network (fiber size 100–750 nm), an interconnective microporous structure (1–10 μm) and high porosity (>90%). HAP was homogeneously distributed in the scaffold, as a result, the compressive modulus of PLLA/HAP (80:20, w/w) increased to 3.15-fold compared with that of a pure PLLA scaffold. Incorporating HAP into PLLA network also buffered the pH decline in vitro degradation and enhanced the protein adsorption of the composite scaffold significantly. The new nano composite scaffold is potentially a very promising scaffold for tissue engineering.  相似文献   

13.
l-(+)-Glutamic acid hydro bromide, an isomorphic salt of l-glutamic acid hydrochloride, was synthesized and the synthesis was confirmed using Fourier transform infrared analysis. Solubility of the material in water was determined. l-Glutamic acid hydro bromide crystals were grown by low temperature solution growth using the solvent evaporation technique. Single crystal X-ray diffraction studies were carried out and the cell parameters, atomic co-ordinates, bond lengths and bond angles were reported. High-resolution X-ray diffraction studies were carried out and good crystallinity for the grown crystal was observed from the diffraction curve. The grown crystals were subjected to dielectric studies. Ultraviolet-visible-near infrared spectral analysis shows good optical transmission in the visible and infrared region of the grown crystals. The second harmonic generation efficiency of l-glutamic acid hydro bromide crystal was determined using the Kurtz powder test and it was found that it had efficiency comparable with that of the potassium di-hydrogen phosphate crystal.  相似文献   

14.
This research attempts to utilize polymer degradability in modifying electrical properties of poly(l-lactide) (PLLA)/poly(methyl methacrylate) (PMMA)/carbon fillers composites. Three kinds of carbon particles, i.e. carbon black, vapor-grown carbon fiber, and carbon nanotube, were compounded with PLLA/PMMA blend, followed by hydrolytic degradation of the composites, resulted in degradation of PLLA molecular chain from the surface of samples, with PMMA and carbon particles remained undegraded. By controlling degradation rate, it was possible to prepare samples with low surface resistivity, yet at the same time exhibited high value of volume resistivity. It was also found that final electrical properties of degraded composites depend on the size and the shape of the fillers.  相似文献   

15.
Biodegradable poly(l-lactide) (PLLA)/polyhedral oligomeric silsesquioxanes (POSS) nanocomposite was prepared via solution casting method for the first time in this work. Scanning electron microscopy observation indicates that POSS were homogeneously dispersed in the PLLA matrix. Effect of POSS on the crystal structure, crystallization kinetics, dynamical properties, and hydrolytic degradation of PLLA in the nanocomposite was investigated in detail. It is found that the presence of POSS has enhanced significantly the crystallization rate, improved mechanical properties and accelerated the hydrolytic degradation of PLLA in the nanocomposite with respect to neat PLLA.  相似文献   

16.
The macromolecular chain conformation in solution changes with the solvent and temperature, which will affect the formation of crystalline structure in the subsequent crystallization process. The crystallization behavior of poly(l-lactide) samples prepared from solutions with various concentrations was studied by differential scanning calorimetric and X-ray diffraction. It is found that the sample recovered from a dilute solution exhibits higher crystallinity, higher non-isothermal crystallization temperature and faster crystallization rate. The condensation process of polymer chain in dilute solutions has an influence on the crystallization of polymer in the solid state. This results in the acceleration of the melt crystallization rate and the rise of non-isothermal crystallization temperature of PLLA recovered from the dilute solution.  相似文献   

17.
An efficient semiorganic nonlinear optical crystal l-Glutamic acid hydrochloride has been grown by using the novel uniaxial crystal growth method of Sankaranarayanan and Ramasamy with a slight modification in the experimental setup. This method allows the crystals to grow in one specified axis with well developed facet. The grown crystal has a cylindrical morphology with good optical quality. The grown crystal has been characterized by powder X-ray diffraction and UV-Vis-NIR analyses. The NLO efficiency of the crystal has been confirmed by using the Kurtz powder technique.  相似文献   

18.
The fibrous membranes prepared by electrospinning have great advantages, such as high porosity and high specific surface area. However, low mechanical strength of electrospun membranes has been one of the most difficult technical problems to overcome, resulting in negative impact on the application. In this paper, the heat-assisted compression approach was employed to improve the mechanical performances of electrospun poly(l-lactide)(PLLA) membranes, especially in tensile strength. It is found that the electrospun PLLA membranes crystallize in α form and strong fiber-to-fiber linkages occurred with the aid of heat and compression. The tensile properties including tensile strength and modulus of membranes treated with a press at 6 MPa and a temperature at 60 °C (80 °C and 100 °C) increased by more than 100% compared with those of the as-electrospun membranes.  相似文献   

19.
The use of glass fibre reinforced polyester composites raises many health and safety and environmental questions. One alternative is the development of high performance bio-based bio-composites with low environmental impact. Improved understanding of interfacial properties is essential to optimise the mechanical properties and durability of these materials, but so far few data are available. The present work describes the interfacial characterization of Flax fibre/Poly(lactic) acid (PLLA) system at the micro-scale using the microbond test. Different thermal treatments have been carried out (cooling rate and annealing) in order to evaluate the influence of matrix and interfacial morphologies as well as residual stress on interfacial properties. Micromechanical models have been used to determine the interfacial shear strength. When cooling rate is slow, improved interfacial properties are observed.  相似文献   

20.
A simple strategy of transgenic sequence-specific detection without a special amplification procedure was developed on the basis of aluminum(III)/poly(l-glutamic acid) (PLGA) film. An aluminum ion (Al(III)) thin film was assembled on the surface of PLGA via the electrostatic binding of Al(III) with carboxyl, namely Al(III)/PLGA. The immobilization of deoxyribonucleic acid (DNA) was carried out on this Al(III)/PLGA film by Al(III)-single strand DNA (ssDNA) interaction. Surface hybridization between the immobilized ssDNA and its complementary ssDNA was monitored by electrochemical impedance spectroscopy (EIS) using [Fe(CN)6]3−/4− as a redox probe. Under the optimal conditions, this DNA electrochemical sensor was applied to determine the specific gene sequence related to phosphinothricin acetyltransferase transgene (PAT) in the transgenic plants by label-free EIS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号