首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antimony-doped Tin oxide (ATO) films have been prepared by inkjet-printing method using ATO nanoparticle inks. The electrical and optical properties of the ATO films were investigated in order to understand the effects of rapid thermal annealing (RTA) temperatures. The decrease in the sheet resistance and resistivity of the inkjet-printed ATO films was observed as the annealing temperature increased. The film annealed at 700 degrees C showed the sheet resistance of 1.7 x 10(3) Omega/sq with the film thickness of 350 nm. The optical transmittance of the films remained constant regardless of their annealing temperatures. In order to further reduce the sheet resistance of the films as well as the annealing temperature, Ag-grid was printed in between two layers of inkjet-printed ATO. With 1.5 mm Ag line spacing, the Ag-grid embedded ATO film showed the sheet resistance of 25.6 Omega/sq after RTA at 300 degrees C.  相似文献   

2.
In this paper a ZnS/Ag/ZnS (ZAZ) nano-multilayer structure is designed theoretically and optimum thicknesses of ZnS and Ag layers are calculated at 35 and 17 nm, respectively. Several conductive transparent ZAZ nano-multilayer films are deposited on a glass substrate at room temperature by thermal evaporation method. Changes in the electrical, structural, and optical properties of samples are investigated with respect to annealing in air at different temperatures. High-quality nano-multilayer films with the sheet resistance of 8 Ω/sq and the optical transmittance of 83% at 200 °C annealing temperature are obtained. The figure of merit is applied on the ZAZ films and their performance as transparent conductive electrodes are determined.  相似文献   

3.
Transparent conductive ITO/Cu/ITO films were deposited on polyethylene terephthalate (PET) substrates with a SiO2 buffer layer by magnetron sputtering using three cathodes at room temperature. The effect of the SiO2 buffer layer thickness on the electrical and optical properties of ITO/Cu/ITO films was investigated. The ITO/Cu/ITO film deposited on the 40 nm thick SiO2 buffer layer exhibits a sheet resistance of 143Ω/sq and transmittance of 65% at 550 nm wavelength. Highly transparent ITO/Cu/ITO films with a transmittance of 80% and a sheet resistance of 98.7Ω/sq have been obtained by applying −60 V substrate bias.  相似文献   

4.
《Vacuum》2012,86(4):443-447
Transparent conductive ITO/Cu/ITO films were deposited on polyethylene terephthalate (PET) substrates with a SiO2 buffer layer by magnetron sputtering using three cathodes at room temperature. The effect of the SiO2 buffer layer thickness on the electrical and optical properties of ITO/Cu/ITO films was investigated. The ITO/Cu/ITO film deposited on the 40 nm thick SiO2 buffer layer exhibits a sheet resistance of 143Ω/sq and transmittance of 65% at 550 nm wavelength. Highly transparent ITO/Cu/ITO films with a transmittance of 80% and a sheet resistance of 98.7Ω/sq have been obtained by applying −60 V substrate bias.  相似文献   

5.
Y.S. Kim 《Vacuum》2008,82(6):574-578
Transparent and conducting tin-doped indium oxide (ITO) and ITO/Au multilayered films were prepared on polycarbonate (PC) substrates by magnetron sputtering without intentional substrate heating. In order to consider the influence of the Au thickness on the optoelectrical properties and structure of ITO/Au films, the thickness of the Au underlayer was varied from 5 to 20 nm. The optoelectrical properties of the films were quite dependent on the Au film thickness. The lowest sheet resistance of 11 Ω/sq. and an optical transmittance of 61% with respect to air was obtained from ITO (95 nm)/Au (5 nm) films. Thin film crystallinity was also affected by the presence of the Au underlayer and varied with the thickness of the Au films. In X-ray diffraction (XRD) spectra, ITO films did not show any characteristic diffraction peak, while ITO/Au films with a 5-nm Au underlayer showed a characteristic diffraction peak. From the figure of merit, it can be concluded that the most effective Au thickness in ITO/Au films is 5 nm.  相似文献   

6.
Indium tin oxide (ITO) thin films prepared by rf sputtering were annealed in several temperatures. The electrical, optical and structural properties of these films are systematically investigated. The post annealing of the samples lead to considerably higher electrical conductivity, better optical transparency and larger grain size for the films. In an optimum annealing temperature of 400 °C, we have found that a maximized conductivity of films is achieved without a remarkable loss in their transparency. The sheet resistance of 2.3 Ω/□ and average grain size of 30 nm, are the results of the optimized post processing of films. The investigation for microstructure of films investigated by X-ray diffraction measurement (XRD) shows that a preferential crystal growth toward the (2 2 2) orientation takes place when the annealing temperature increases to 400 °C.  相似文献   

7.
W.S. Jung  S.M. Kang  D.H. Yoon 《Thin solid films》2008,516(16):5445-5448
ITO:Ca composite thin films were deposited on glass substrate by the rf magnetron co-sputtering method with various numbers of Ca chips and oxygen partial pressures. The carrier concentration of the ITO:Ca thin film was 7 × 1020 cm− 3 when the number of Ca chips was 4 at an oxygen partial pressure of 1.4%. The sheet resistance and optical transmittance of the ITO:Ca thin films were 68.2 Ω/sq. and 87%, respectively. The work function of the ITO:Ca thin films with 8 Ca chips was changed from 4.6 eV to 5.0 eV when the oxygen partial pressure was increased from 0.8% to 2.2%. When the oxygen partial pressure was 1.2%, a low work function of 4.6 eV was obtained for the ITO:Ca thin films.  相似文献   

8.
Indium tin oxide (ITO) thin films were deposited on glass substrates by ion beam sputter deposition method in three different deposition conditions [(i) oxygen (O2) flow rate varied from 0.05 to 0.20 sccm at a fixed argon (1.65 sccm) flow rate, (ii) Ar flow rate changed from 1.00 to 1.65 sccm at a fixed O2 (0.05 sccm) flow rate, and (iii) the variable parameter was the deposition time at fixed Ar (1.65 sccm) and O2 (0.05 sccm) flow rates]. (i) The X-ray diffraction (XRD) patterns show that the ITO films have a preferred orientation along (400) plane; the orientation of ITO film changes from (400) to (222) direction as the O2 flow rate is increased from 0.05 to 0.20 sccm. The optical transmittance in the visible region increases with increasing O2 flow rate. The sheet resistance (Rs) of ITO films also increases with increasing O2 flow rate; it is attributed to the decrease of oxygen vacancies in the ITO film. (ii) The XRD patterns show that the ITO film has a strong preferred orientation along (222) direction. The optical transmittance in the visible spectral region increases with an increase in Ar flow rate. The Rs of ITO films increases with increasing Ar flow rate; it is attributed to the decrease of grain size in the films. (iii) A change in the preferred orientations of ITO films from (400) to (222) was observed with increasing film thickness from 314 to 661 nm. The optical transmittance in the visible spectral region increases after annealing at 200 °C. The Rs of ITO film decreases with the increase of film thickness.  相似文献   

9.
Corundum (hexagonal) structure indium tin oxide (h-ITO) nanocrystals have been synthesized by subjecting an aqueous solution of In and Sn chlorides (Sn/In 8 wt.%) to a hydrothermal process followed by annealing at 450 °C in forming gas for 1 h. The annealing temperature was selected based on thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA) of the dried precipitated powder, which showed a stable weight and phase at temperatures above 420 °C. X-ray diffraction (XRD) patterns showed the formation of orthorhombic InOOH precipitates that is transformed, after annealing, into h-ITO nanocrystals with 32 nm average crystal size. For nanostructure film deposition, dispersed sols of the prepared nanocrystals were spun coated on glass substrates. The films were densified by UV irradiation, whilst four-probe method was used to measure its sheet resistance. A sheet resistance as low as 10.6 kΩ □ have been reached. Scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) showed that the films have high surface roughness and nanopores. The transmittance spectra of the nanostructure films were measured in the UV–vis–NIR wavelength range. In addition to its low resistivity, nanostructure h-ITO films showed a wide range of transparency.  相似文献   

10.
ITO (tin doped indium oxide) coatings were produced by gravure printing process on PET and PEN foils. The printing paste consists of ITO nanoparticles, which are dispersed in a solvent and mixed with a binder. By modification of the printing paste, the sheet resistance (R/sq) of the ITO coatings after hardening under UV-irradiation at low temperatures (< 130 °C) could be decreased to 1 kΩ/sq. R/sq could be further reduced down to 0.5 kΩ/sq by heat treatment under forming gas atmosphere (N2/H2), the transmission of the ITO coated foils still being more than 80% in the visible range. The application of these ITO films as a bottom electrode in organic photodiodes (OPDs) is shown, and the current density-voltage characteristics of the OPDs are presented.  相似文献   

11.
Indium tin oxide (ITO) films were deposited on glass substrates by rf magnetron sputtering using a ceramic target (In2O3-SnO2, 90-10 wt%) without extra heating. The post annealing was done in air and in vacuum, respectively. The effects of annealing on the structure, surface morphology, optical and electrical properties of the ITO films were studied. The results show that the increase of the annealing temperature improves the crystallinity of the films, increases the surface roughness, and improves the optical and electrical properties. The transmittance of the films in visible region is increased over 90% after the annealing process in air or in vacuum. The resistivity of the films deposited is about 8.125×10−4 Ω cm and falls down to 2.34×10−4 Ω cm as the annealing temperature is increased to 500°C in vacuum. Compared with the results of the ITO films annealed in air, the properties of the films annealed in vacuum is better.  相似文献   

12.
New transparent conductive films having the sandwich structure of gallium-indium-oxide/silver/gallium-indium-oxide (GIO/Ag/GIO) were prepared by conventional magnetron sputtering method at ambient substrate temperature. The electrical and optical properties of the films were compared with those of conventional indium-tin-oxide (ITO) films and ITO/Ag/ITO sandwich films. The GIO/Ag/GIO (40 nm/8 nm/40 nm) sandwich films, in which the GIO film was deposited using a GIO ceramic target with In content [In/(Ga + In)] of 10 at.%, exhibited a low sheet resistance of 11.3 Ω/sq and a large average transmittance of over 92.9% in the visible region (400-800 nm). This GIO/Ag/GIO films also exhibited a novel characteristic of transparency in the ultraviolet region; they showed high transmittance of 82.2% at the wavelength of 330 nm and 40.8% at the wavelength of 280 nm, which was not shown in the ITO films and the ITO/Ag/ITO sandwich films. The GIO/Ag/GIO sandwich films are useful as transparent electrode for emitting devices of ultraviolet radiation because of both their high conductivity and high transparency in the ultraviolet region.  相似文献   

13.
In this work we present a study on the effect of annealing temperatures on the structural, morphological, electrical and optical characteristics of gallium doped zinc oxide (GZO), indium zinc oxide (IZO) and indium-tin-oxide (ITO) films. GZO and IZO films were deposited at room temperature by r.f. magnetron sputtering, whereas the ITO films were commercial ones purchased from Balzers. All films were annealed at temperatures of 250 and 500 °C in open air for 1 h. The GZO and ITO films were polycrystalline. The amorphous structure of as-deposited IZO films becomes crystalline on high temperature annealing (500 °C). The sheet resistivity increased with increase in annealing temperature. GZO films showed an increase of 6 orders of magnitude. The optical transmittance and band gap of as-deposited films varied with annealing. The highest transmittance (over 95 %) and maximum band gap (3.93 eV) have been obtained for ITO films.  相似文献   

14.
In this study, transparent conducting Al-doped zinc oxide (AZO) films with a thickness of 150 nm were prepared on Corning glass substrates by the RF magnetron sputtering with using a ZnO:Al (Al2O3: 2 wt.%) target at room temperature. This study investigated the effects of the post-annealing temperature and the annealing ambient on the structural, electrical and optical properties of the AZO films. The films were annealed at temperatures ranging from 300 to 500 °C in steps of 100 °C by using rapid thermal annealing equipment in oxygen. The thicknesses of the films were observed by field emission scanning electron microscopy (FE-SEM); their grain size was calculated from the X-ray diffraction (XRD) spectra using the Scherrer equation. XRD measurements showed the AZO films to be crystallized with strong (002) orientation as substrate temperature increases over 300 °C. Their electrical properties were investigated by using the Hall measurement and their transmittance was measured by UV-vis spectrometry. The AZO film annealed at the 500 °C in oxygen showed an electrical resistivity of 2.24 × 10− 3 Ω cm and a very high transmittance of 93.5% which were decreased about one order and increased about 9.4%, respectively, compared with as-deposited AZO film.  相似文献   

15.
Tin-doped indium oxide (ITO) films were deposited by RF magnetron sputtering on TiO2-coated glass substrates (the TiO2 layer is usually called seed layer). The properties of ITO films prepared at a substrate temperature of 300 °C on bare and TiO2-coated glass substrates have been analyzed by using X-ray diffraction, atomic force microscope, optical and electrical measurements. Comparing with single layer ITO film, the ITO film with a TiO2 seed layer of 2 nm has a remarkable 41.2% decrease in resistivity and similar optical transmittance. The glass/TiO2 (2 nm)/ITO film achieved shows a resistivity of 3.37 × 10−4 Ω cm and an average transmittance of 93.1% in the visible range. The glass/TiO2 may be a better substrate compared with bare glass for depositing high quality ITO films.  相似文献   

16.
Study of ZnO sol-gel films: Effect of annealing   总被引:1,自引:0,他引:1  
Thin films of zinc oxide were deposited by spin coating method on different substrates. The obtained samples were thermally treated at temperatures from 400 °C up to 850 °C. The structural study was performed by XRD and FTIR techniques in order to observe the effect of the annealing temperatures. The sol-gel ZnO films showed polycrystalline hexagonal structure. The optical transmittance reached 91% and it diminished with increasing annealing temperatures.  相似文献   

17.
Transparent conducting indium doped zinc oxide (IZO) thin films have been deposited on soda-lime glass substrates by the spray pyrolysis technique. The structural, electrical, and optical properties of these films were investigated as a function of substrate temperature. In this work the substrate temperature was varied between 350 °C and 500 °C. X-ray diffraction pattern reveals that at 350 °C dominant peak is (100) orientation. By increasing substrate temperature from 350 °C to 450 °C, sheet resistance decreases, from 302 Ω/□ to 26 Ω/□, then at 500 °C increases to 34 Ω/□. In the useful range for deposition (i.e. 450 °C to 500 °C), the orientation of the films was predominantly (002). The lowest sheet resistance (26Ω/□) is obtained at substrate temperature of about 450 °C with the transmittance of about 75%. Study of scanning electron microscopy images shows that films deposited at 400 °C, have grain size as large as 574 nm, while with increasing substrate temperature to 450 °C, grain size becomes smaller and reaches to a value of about 100 nm with spherical shape. At 500 °C grain size value would be around 70 nm with the same spherical shape.  相似文献   

18.
W.T. Yen  P.C. Yao  Y.L. Chen 《Thin solid films》2010,518(14):3882-1266
In this study, highly conductive films of ZnO:Ga (GZO) were deposited by pulsed direct current magnetron sputtering to explore the effect of post-annealing on the structural, electrical and optical properties of the films. XRD patterns showed that after annealing, the intensity of c-axis preferentially oriented GZO (002) peak was apparently improved. GZO film annealing at 300 °C for 0.5 h exhibits lowest resistivity of 1.36 × 10− 4 Ω cm. In addition, the film shows good optical transmittance of 88% with optical band gap, 3.82 eV. Carrier concentration and optical band gap both decreases with the annealing temperature. Besides, the near-infrared transmittance at 1400 nm is below 5%, while the reflectivity at 2400 nm is as high as 70%.  相似文献   

19.
Y.M. Kang  J.H. Choi  P.K. Song 《Thin solid films》2010,518(11):3081-3668
Ce-doped indium tin oxide (ITO:Ce) films were deposited on flexible polyimide substrates by DC magnetron sputtering using ITO targets containing various CeO2 contents (CeO2 : 0, 0.5, 3.0, 4.0, 6.0 wt.%) at room temperature and post-annealed at 200 °C. The crystallinity of the ITO films decreased with increasing Ce content, and it led to a decrease in surface roughness. In addition, a relatively small change in resistance in dynamic stress mode was obtained for ITO:Ce films even after the annealing at high temperature (200 °C). The minimum resistivity of the amorphous ITO:Ce films was 3.96 × 10− 4 Ωcm, which was deposited using a 3.0 wt.% CeO2 doped ITO target. The amorphous ITO:Ce films not only have comparable electrical properties to the polycrystalline films but also have a crystallization temperature > 200 °C. In addition, the amorphous ITO:Ce film showed stable mechanical properties in the bended state.  相似文献   

20.
Highly oriented and transparent indium tin oxide (ITO) films have been deposited onto glass substrates by radio frequency magnetron sputtering at 648 K, under an oxygen partial pressure of 1 Pa. The effect of the sputtering power and annealing was studied. Transmission was measured with a double beam spectrometer and electrical analysis using four probe and Hall effect setup. Structural characterization of the films was done by X-ray diffraction. Characterization of the coatings revealed an electrical resistivity below 6.5 × 10− 3 Ω cm. The ITO films deposited at 648 K were amorphous, while the crystallinity improved after annealing at 700 K. The optical transmittance of the film was more than 80% in the visible region. The surface morphology examined by scanning electron microscopy appears to be uniform over the entire surface area, after annealing. The NO2 sensing properties of the ITO films were investigated. At a working temperature of 600 K, the ITO sensor showed high sensitivity to NO2 gas, at concentrations lower than 50 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号