首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this paper, TiO2 hollow nanostructures with anatase walls have been rapidly fabricated by using CuO as template and microwave heating. These TiO2 hollow nanostructures have been characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Experimental results showed that the TiO2 shell transformed from amorphous to anatase phase in 3 min, induced by the hot CuO core under microwave irradiation. The diameter of TiO2 hollow nanostructures is about 50-80 nm, and the length is about 200-300 nm. The thickness of the shell is about 3 nm. This method is promising to be used to synthesize other nanomaterials with a hollow nanostructure.  相似文献   

2.
A new technique to produce microscale Ti3O5 nano- and microfiber meshes is proposed. When a 3 wt% carbon-doped TiO2 film on Si(1 0 0) was annealed at 1000 °C in wet nitrogen (0.8%H2O), the amorphous TiO2 phase gave rise to crystalline phases of λ-Ti3O5 (75%) and rutile + trace of TiO2−xCx (25%). From Raman and FTIR Spectroscopy results, it was concluded that rutile is formed at the inner layer located at the interface between the mesh and the Si that was located away from the surface such that the meshes of nano- and microfibers are predominantly composed of Ti3O5 grown from the reaction of rutile with Si to form Ti3O5 and SiO2. On the other hand, it was noteworthy that the microscale mesh of nano- and microfibers showed increased photoluminescence compared with amorphous TiO2. The PL spectrum which had a broad band in the visible spectrum, fitted as three broad Gaussian distributions centered at 571.6 nm (∼2.2 eV), 623.0 nm (∼2.0 eV) and 661.9 nm (∼1.9 eV).  相似文献   

3.
M.C. Kao  H.Z. Chen 《Thin solid films》2009,517(17):5096-2818
Nanocrystalline anatase TiO2 thin films with different thicknesses (0.5-2.0 μm) have been deposited on ITO-coated glass substrates by a sol-gel method and rapid thermal annealing for application as the work electrode for dye-sensitized solar cells (DSSC). From the results, the increases in thickness of TiO2 films can increase adsorption of the N3 dye through TiO2 layers to improve the short-circuit photocurrent (Jsc) and open-circuit voltage (Voc), respectively. However, the Jsc and Voc of DSSC with a TiO2 film thickness of 2.0 μm (8.5 mA/cm2 and 0.61 V) are smaller than those of DSSC with a TiO2 film thickness of 1.5 μm (9.2 mA/cm2 and 0.62 V). It could be due to the fact that the increased thickness of TiO2 thin films also resulted in a decrease in the transmittance of TiO2 thin films thus reducing the incident light intensity on the N3 dye. An optimum power conversion efficiency (η) of 2.9% was obtained in a DSSC with the TiO2 film thickness of 1.5 μm.  相似文献   

4.
Undoped and Ag-doped TiO2 anatase nanocrystals were successfully prepared from titanium isopropoxide by a novel fast-hydrothermal method. The as-prepared TiO2 nanocrystals were characterized by XRD, DRUV-VIS spectroscopy and SEM/EDX. The results show that the anatase TiO2 has a particle size of around 4 nm from SEM and XRD results.  相似文献   

5.
Large-scale fan-shaped rutile TiO2 nanostructures have been synthesized by means of a simple hydrothermal method using only TiCl4 as titanium source and chloroform/water as solvents. The physicochemical features of the fan-shaped TiO2 nanostructures are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), nitrogen absorption-desorption, diffuse reflectance ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FTIR). Structural characterization indicates that the fan-shaped TiO2 nanostructures are composed of several TiO2 nanorods with diameters of about 5 nm and lengths of 300-350 nm. The average pore size and BET surface area of the fan-shaped TiO2 nanostructures are 6.2 nm and 59 m2/g, respectively. Optical adsorption investigation shows that the fan-shaped TiO2 nanostructures possess optical band gap energy of 3.11 eV.  相似文献   

6.
The spectroscopic properties of Na3Gd(PO4)2 and Na3Gd(PO4)2:Ce3+ phosphors in the VUV-UV spectral range were investigated. Five excitation bands of Ce3+ ions at Gd3+ sites are observed at wavelengths of 205, 246, 260, 292, and 321 nm. Doublet Ce3+ 5d → 4f emission bands are observed at 341 and 365 nm with a decay constant τ1/e around 26 ns. The X-ray excited luminescence of Na3Gd0.99Ce0.01(PO4)2 at room temperature shows a photon yield of ∼17,000 photons/MeV of absorbed X-ray energy.  相似文献   

7.
Photocatalytic properties of porous TiO2/Ag thin films   总被引:1,自引:0,他引:1  
In this study, nanocrystalline TiO2/Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO2/Ag thin films were prepared after calcination at a temperature of 500 °C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO2 films. The as-prepared TiO2 and TiO2/Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation.When PS spheres of different sizes were introduced after calcination, the as-prepared TiO2 films exhibited different porous structures. XRD results showed that all TiO2/Ag films exhibited a major anatase phase. The photodegradation of porous TiO2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure.  相似文献   

8.
The effect of Li+ insertion into different sized TiO2 nanoparticles and their influences on the photoconversion efficiency of dye-sensitized solar cells (DSSC) were investigated. TiO2 nanoparticles with different particle sizes (22 nm, 14 nm and 6 nm) doped with Li+ were employed to form thin film electrodes and their properties were characterized by X-ray diffraction (XRD) and electrochemical impedance spectroscopy analysis. XRD evidenced the presence of anatase as the main phase. From the XRD analysis, it was observed that the Li+ ions could be inserted into both the surface and bulk of the TiO2 nanoparticles. In the larger particle size, the Li+ ions are inserted into the bulk anatase where as Li+ ions bounded on the TiO2 surface for the smaller crystallite size. The photovoltaic properties were measured by a current-voltage meter under AM1.5 simulated light radiation. It exhibited that the overall photoconversion efficiency of DSSC was decreased in the larger particles while it was enhanced in the smaller nanoparticles when Li+ was doped into the TiO2 nanoparticles. A nearly 40% decrease in the efficiency (η) of DSSC was observed upon intercalation of Li+ ions into 22 nm sized TiO2 nanoparticles (P25). The 14 nm sized TiO2 nanoparticles (P90) showed slightly less efficiency (η) upon Li+ doping than that of the undoped sample. However, the smallest sized TiO2 nanoparticles (6 nm) showed higher efficiency than that of the undoped one. This phenomenon is explained based on electron trapping and charge recombination due to lithium doping.  相似文献   

9.
Using zinc naphthenate and titanium tetra isopropoxide (1:1 mol.%) dissolved in ethanol as precursors, single phase Zn2TiO4 nanoparticles were synthesized by the flame spray pyrolysis technique. The Zn2TiO4 nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The BET surface area (SSABET) of the nanoparticles was measured by nitrogen adsorption. The average diameter of Zn2TiO4 spherical particles was in the range of 5 to 10 nm under 5/5 (precursor/oxygen) flame conditions. All peaks can be confirmed to correspond to the cubic structure of Zn2TiO4 (JCPDS No. 25-1164). The SEM result showed the presence of agglomerated nanospheres with an average diameter of 10-20 nm. The crystallite sizes of spherical particles were found to be in the range of 5-18 nm from the TEM image. An average BET equivalent particle diameter (dBET) was calculated using the density of Zn2TiO4.  相似文献   

10.
Oleic acid-capped TiO2 nanoparticles (NPs) were directly grown on untreated multiwalled carbon nanotubes (MWCNTs) from a stable titanium carboxylate complex through a solvothermal aminolysis process in organic media. The shape of the TiO2 NPs loaded on the MWCNTs can be controlled from nanodots (∼ 3 nm in diameter) to nanorods (∼ 5 nm in diameter, 30-40 nm in length) by changing solvent components and by Co2+ doping. The resulting hybrids can be well dispersed in apolar organic solvents, which may provide possibilities for manipulating them in solutions for widespread applications.  相似文献   

11.
Anatase TiO2 coated multiwalled carbon nanotube (MWNT) nanocomposites were prepared by combining the sol-gel method with a self assembly technique at a low temperature. XRD, TEM, FTIR and XPS spectra were applied to characterize the crystal phase, microstructure, and other physicochemical properties of the sample. The results showed that MWNTs were covered with a 12-20 nm thickness layer of anatase TiO2 or surrounded by a 30 -290 nm thickness coating of anatase TiO2. The layer or coating is constructed of TiO2 nanoparticles about 5.8 nm. Furthermore, as-prepared composite was rich in surface hydroxyl groups.  相似文献   

12.
This study uses blue LED light (λmax = 475 nm) activated TiO2/Fe3O4 particles to evaluate the particles' photocatalytic activity efficiency and bactericidal effects in seawater of variable salinities. Different TiO2 to Fe3O4 mole ratios have been synthesized using sol-gel method. The synthesized particles contain mainly anatase TiO2, Fe3O4 and FeTiO3. The study has identified TiO2/Fe3O4's bactericidal effect to marine fish pathogen (Photobacterium damselae subsp. piscicida BCRC17065) in seawater. The SEM photo reveals the surface destruction in bacteria incubated with blue LED irradiated TiO2/Fe3O4. The result of this study indicates that 1) TiO2/Fe3O4 acquires photocatalytic activities in both the freshwater and the seawater via blue LED irradiation, 2) higher photocatalytic activities appear in solutions of higher TiO2/Fe3O4 mole ratio, and 3) photocatalytic activity decreases as salinity increases. These results suggest that the energy saving blue LED light is a feasible light source to activate TiO2/Fe3O4 photocatalytic activities in both freshwater and seawater.  相似文献   

13.
TiO2/SiOx/TiOx multi-layers on quartz glass were prepared by electron-beam evaporation method and their structural and photocatalytic properties were investigated. The photocatalytic activity of the TiO2/SiOx/TiOx multi-layer was evaluated by the photodecomposition of methylene blue in aqueous solution. As the thickness of the SiOx inter-layer increased, the surface roughness of the TiO2/SiOx/TiOx multi-layer increased but the anatase crystallite size decreased. The TiO2/SiOx(80 nm)/TiOx multi-layer exhibited excellent photocatalytic activity resulting from higher surface roughness and more trap levels in the SiOx(80 nm) inter-layer.  相似文献   

14.
This paper demonstrates a new method to grow nano-structured TiO2 over a plasma electrolytically oxidised titanium surface. Microstructural characterisation by employing a variety of transmission electron microscopy techniques was carried out to explore the nano-scale structural changes due to the alkaline and thermal treatments. Photovoltaic performance was measured and this revealed the effect of microstructural changes. Such coatings can be considered potential candidates for the electrode material in a dye-sensitised solar cell (DSSC). The experimental results show that a titania layer with a 3D network ‘nano-flaky’ surface can be successfully prepared. The obtained nano-flakes are around 100 to 200 nm across and have a thickness of less than 10 nm. These completely cover the outermost surface as well as the inner pores and voids. The formed nano-flaky structure is amorphous and provides a larger surface area for dye absorption to increase the efficiency of assembled DSSC. Thermal annealing treatment causes the transformation of the amorphous nano-flakes into anatase nano-crystallites and further enhances the photovoltaic efficiency of the assembled DSSC.  相似文献   

15.
The effect of zirconium dioxide addition on crystal structure of sol-gel TiO2 mesoporous films and powders has been investigated by means of Raman spectroscopy, X-Ray diffraction, and Atomic force microscopy. Zirconium incorporation (up to 30 mol%) into TiO2 lattice resulted in the formation of Ti1 − xZrxO2 solid solution with anatase structure for the binary powders has been proved. Appearance of tetragonal ZrO2 phase was observed for the samples with high zirconium content.  相似文献   

16.
The crystals of 1 mol% Ce-doped LuLiF4 (Ce:LLF) grown by the micro-pulling down (μ-PD) method and 1 mol% Ce-doped LuScBO3 (Ce:LSBO) grown by the conventional Czochralski (Cz) method were examined for their scintillation properties. Ce:LLF and Ce:LSBO demonstrated ∼80% transparency at wavelengths longer than 300 and 400 nm, respectively. When excited by 241Am α-ray to obtain radioactive luminescence spectra, Ce3+ 5d-4f emission peaks were detected at around 320 nm for Ce:LLF and at around 380 nm for Ce:LSBO. In Ce:LSBO, the host luminescence was also observed at 260 nm. By recording pulse height spectra under γ-ray irradiation, the absolute light yield of Ce:LLF and Ce:LSBO was measured to be 3600±400 and 4200±400 ph/MeV, respectively. Decay time kinetics was also investigated using a pulse X-ray equipped streak camera system. The main component of Ce:LLF was ∼320 ns and that of Ce:LSBO was ∼31 ns. In addition, the light yield non-proportionality and energy resolution against the γ-ray energy were evaluated.  相似文献   

17.
Dye-sensitized solar cells (DSSC) are based on the concept of photosensitization of wide-band-gap mesoporous oxide semiconductors. At present, DSSC have ventured into advanced development and pilot production. Our current research emphasizes on improvements on titanium dioxide (TiO2) photosensitivity under visible light irradiation by using metal plasma ion implantation (MPII). The anatase TiO2 electrode was prepared via a sol-gel process and deposited onto indium-tin oxide glass substrates. Subsequently, the as-deposited TiO2 films were subjected to MPII at 20 keV in order to incorporate ruthenium (Ru) atoms onto the TiO2 surface layer. The Ru-implanted TiO2 thin film possessed nanocrystalline Ru clusters of 20 nm in diameter and distributed in near surface layer of TiO2 films. The Ru clusters showed effective in both prohibiting electron-hole recombination and generating additional Ru-O impurity levels for the TiO2 band gap structure. A significant reduction of TiO2 band gap energy from 3.22 to 3.11 eV was achieved, which resulted in the extension of photocatalysis of TiO2 from UV to Vis regime. A small drop of photoelectric performance of 8% was obtained due to the incorporation of Ru atoms in the surface layer of TiO2, a similar side effect as observed in the Fe-implanted TiO2. However, the overall retention of the photocatalysis capability is as high as 92% when switch from UV to Vis irradiation. The improvement of the photosensitivity of TiO2 DSSC by means of metal plasma ion implantation is promising.  相似文献   

18.
Li3 − xFe2 − xTix(PO4)3/C (x = 0-0.4) cathodes designed with Fe doped by Ti was studied. Both Li3Fe2(PO4)3/C (x = 0) and Li2.8Fe1.8Ti0.2(PO4)3/C (x = 0.2) possess two plateau potentials of Fe3+/Fe2+ couple (around 2.8 V and 2.7 V vs. Li+/Li) upon discharge observed from galvanostatic charge/discharge and cyclic voltammetry. Li2.8Fe1.8Ti0.2(PO4)3/C has higher reversibility and better capacity retention than that of the undoped Li3Fe2(PO4)3/C. A much higher specific capacity of 122.3 mAh/g was obtained at C/20 in the first cycle, approaching the theoretical capacity of 128 mAh/g, and a capacity of 100.1 mAh/g was held at C/2 after the 20th cycle.  相似文献   

19.
We have studied the structural and optical properties of thin films of TiO2, doped with 5% ZrO2 and deposited on glass substrate (by the sol-gel method). The dip-coated thin films have been examined at different annealing temperatures (350 to 450 °C) and for various layer thicknesses (63-286 nm). Refractive index and porosity were calculated from the measured transmittance spectrum. The values of the index of refraction are in the range of 1.62-2.29 and the porosity is in the range of 0.21-0.70. The coefficient of transmission varies from 50 to 90%. In the case of the powder of TiO2, doped with 5% ZrO2, and aged for 3 months in ambient temperature, we have noticed the formation of the anatase phase (tetragonal structure with 14.8 nm grains). However, the undoped TiO2 exhibits an amorphous phase. After heat treatments of thin films, titanium oxide starts to crystallize at the annealing temperature 350 °C. The obtained structures are anatase and brookite. The calculated grain size, depending on the annealing temperature and the layer thickness, is in the range (8.58-20.56 nm).  相似文献   

20.
Trivalent/bivalent metal ions doped TiO2 thin films (MxTi1−xO2, M = Cr3+, Fe3+, Ni2+, Co2+, Mn2+ and x = 0.01, 0.05, 0.1, 0.15, 0.2) were deposited on Indium–tin oxide (ITO) coated glass substrates by spin coating technique. X-ray photoelectron spectroscopy (XPS) showed Ti4+ oxidation state of the Ti2p band in the doped p-TiO2. The homogenous MxTi1−xO2 was used to support n-ZnO thin films with thickness ∼40–80 nm and vertically aligned n-ZnO nanorods (NR) with length ∼300 nm and 1.5 μm. Current (I)–voltage (V) characteristics for the Ag/n-ZnO/MxTi1−xO2/ITO/glass assembly showed rectifying behavior with small turn-on voltages (V0) < 1 V. The ideality factor (η) and the resistances in both forward and reverse bias were calculated. The temperature dependence performance of these bipolar devices was performed and variation of the parameters with temperature was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号