首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corrosion tests for medical materials are often performed in simulated body fluids (SBF). When SBF are used for corrosion measurement, the open question is, how well they match the conditions in the human body. The aim of the study was to compare the corrosion behaviour of different experimental magnesium alloys in human whole blood and PBSminus (phosphate buffered saline w/o Ca and Mg) as a simulated body fluid by gravimetric weight measurements and microscopic evaluation. Eight different experimental magnesium alloys, containing neither Mn nor other additives, were manufactured. With these alloys, a static immersion test in PBSminus and a dynamic test using the Chandler-loop model with human whole blood over 6 h were performed. During the static immersion test, the samples were weighed every hour. During the dynamic test, the specimens were weighed before and after the 6 h incubation period in the Chandler-loop. From both tests, the total mass change was calculated for each alloy and the values were compared. Additionally, microscopic pictures from the samples were taken at the end of the test period. All alloys showed different corrosion behaviour in both tests, especially the alloys with high aluminium content, MgAl9 and MgAl9Zn1. Generally, alloys in PBS showed a weight gain due to generation of a microscopically visible corrosion layer, while in the blood test system a more or less distinct weight loss was observed. When alloys are ranked according to corrosion susceptibility, the results differ also between the test systems. The MgAl9 alloy, showing the most pronounced corrosion in PBS, was one of the least corroding alloys under simulated in vivo conditions in blood. Thus, the ranking concerning clinical suitability of the magnesium alloys tested in this study is different, depending on the used electrolyte and the kind of method. For a possible clinical use, the alloy MgAl9Zn1 might be preferable for further investigations.  相似文献   

2.
In current paper, influence of tris-hydroxymethyl-aminomethane (tris) in simulated body fluid (SBF) on degradation behavior of pure magnesium is investigated using electrochemical tests as well as degradation measurement. Our results shows that tris mainly affects earlier degradation behavior of pure magnesium alloy. Tris and HCl used in preparation of SBF will form Tris–HCl which only lowers corrosion potential of magnesium slightly but accelerates degradation rates of pure magnesium by teens times. Consumption of OH? generated during magnesium dissolution by Tris–HCl progressively promotes transformation from Mg to Mg2+, which is the main reason for quite high degradation rate of pure magnesium in SBF. Pure magnesium is also more sensitive to pitting corrosion due to inclusion of Tris–HCl in SBF. This study deepens the understanding on degradation mechanism of biomedical magnesium alloys.  相似文献   

3.
X.N. Gu  Y.F. Zheng  Y. Liu 《Materials Letters》2010,64(17):1871-1806
The lotus-type porous pure magnesium was prepared using a metal/gas eutectic unidirectional solidification method (GASAR process). The corrosion behavior, decay of mechanical property and the cytocompatibility were evaluated with the compact pure Mg as control. The porous pure Mg indicates better corrosion resistance than that of compact pure Mg in SBF at 37 °C. The compressive yield strength of compact and porous pure Mg is (110.3 ± 8.5) MPa and (23.9 ± 4.9) MPa before immersion test, and porous pure Mg exhibits slower decay in compressive yield strength with the extension of immersion period than that of compact pure Mg. With larger exposed surface area, porous pure Mg shows higher Mg concentration in the extract than that of compact pure Mg, which leads to a higher osmotic pressure to cells and might affect its indirect cytotoxicity assay result, but is still within the Grade I RGR value (no toxicity), implying the feasibility as potential tissue engineering scaffold.  相似文献   

4.
In this study a kind of patent binary Mg–6 wt.%Zn magnesium alloy was investigated as degradable biomedical material. The results of in vitro degradation including electrochemical measurements and immersion tests in simulated body fluid (SBF) revealed that zinc could elevate both the corrosion potential and Faraday charge transfer resistance of magnesium and thus improve the corrosion resistance. XRD and EDS analysis proved that the corrosion products on the surface of Mg–Zn contained hydroxyapatite (HA), Mg(OH)2 and other Mg/Ca phosphates, which could reduce the degradation rate. The degradation process of magnesium alloy and the mechanism of corrosion layer formation were also discussed in this work, i.e. the byproducts of degradation of magnesium, Mg2+ and OH?, reacted with the phosphate and Ca2+ in the SBF, thus the corrosion layer containing HA, Mg(OH)2 and other magnesium-substituted apatite precipitated in corrosion pits and covered the surface of magnesium alloy.The hemolysis test found that the hemolysis rate of Mg–Zn was 3.4%, which is lower than the safe value of 5% according to ISO 10993-4. For the cell culture experiments, after 2 h incubation the pre-osteoblastic cell MC3T3-E1 was able to adhere and spread on the corrosion layer of Mg–Zn alloy, indicating that despite the fluctuation of pH value of DMEM culture solution, Mg–Zn alloy could still support the earlier adhesion of pre-osteoblastic cells on the surface. Hemolysis and adhesion of cells display good biocompatibility of Mg–Zn alloy in vitro.  相似文献   

5.
D. Krupa  J. Baszkiewicz  A. Barcz  A. Biliński 《Vacuum》2007,81(10):1310-1313
The corrosion resistance and bioactivity of Ti6Al4V alloy after calcium-ion implantation were examined. Polished samples were implanted with a dose of 1017 Na+/cm2 at a beam energy of 25 keV. The chemical composition of the surface layer formed during the implantation was determined by XPS and SIMS. The bioactivity of the samples was evaluated by soaking them in a simulated body fluid (SBF) at 37 °C for 168 and 720 h. The corrosion resistance in SBF at 37 °C was determined by electrochemical methods after exposure in SBF for various times. The surfaces of the samples before and after examinations were observed by optical microscopy, SEM-EDS and AFM.The results of the corrosion examinations indicated that under stationary conditions and after short-term exposures, the calcium-ion implanted titanium alloy had an increased corrosion resistance, but during the anodic polarization, calcium-implanted samples underwent pitting corrosion. The microscopic observations show that the precipitations of calcium phosphates are present on the surface, but they do not form a continuous layer.  相似文献   

6.
Hydrophobic/super-hydrophobic nanofilms with improved corrosion resistance were fabricated on the surfaces of Mg-Mn-Ce magnesium alloy by a surface modification technique, named as polymer plating, which has been developed to modify superficial characteristics of magnesium alloys with polymeric nanofilms through synthesized organic compounds of triazine dithiol containing functional groups. The nanofilms were prepared by the electrochemical and polymerization reactions during polymer plating analyzed from characteristics of Fourier transform infrared spectrophotometer, X-ray photoelectron spectroscopy and scanning electron microscopy. The fabricated nanofilms changed the surface wettability of blank magnesium alloy from hydrophilic to hydrophobic with contact angle 119.0° of distilled water with lower surface free energy of 20.59 mJ/m2 and even super-hydrophobic with contact angle 158.3° with lowest surface free energy of 4.68 mJ/m2 by different functional nanofilms on their surfaces. Alteration of wettability from hydrophilic to hydrophobic and super-hydrophobic resulted from their low surface free energy and surface morphology with micro- and nano-rough structures. The corrosion behaviors from potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that the super-hydrophobic nanofilm has higher corrosion resistance and stability in 0.1 mol/L NaCl solution and lower corrosion current density (Icorr) with Rct increasing two orders of magnitude of 16,500 Ω·cm2 compared to that obtained for blank of 485 Ω·cm2.  相似文献   

7.
A new biodegradable magnesium–zinc–strontium (Mg–Zn–Sr) alloy was developed and studied for medical implant applications. This first study investigated the alloy processing (casting, rolling, and heat treatment), microstructures, mechanical properties, and degradation properties in simulated body fluid (SBF). Aging treatment of the ZSr41 alloy at 175 °C for 8 h improved the mechanical properties when compared to those of the as-cast alloy. Specifically, the aged ZSr41 alloy had an ultimate tensile strength of 270 MPa, Vickers hardness of 71.5 HV, and elongation at failure of 12.8%. The mechanical properties of the ZSr41 alloy were superior as compared with those of pure magnesium and met the requirements for load-bearing medical implants. Furthermore, the immersion of the ZSr41 alloy in SBF showed a degradation mode that progressed cyclically, alternating between pitting and localized corrosion. The steady-state average degradation rate of the aged ZSr41 alloy in SBF was 0.96 g/(m2·hr), while the pH of SBF immersion solution increased. The corrosion current density of the ZSr41 alloy in SBF solution was 0.41 mA/mm2, which was much lower than 1.67 mA/mm2 for pure Mg under the same conditions. In summary, compared to pure Mg, the mechanical properties of the new ZSr41 alloy improved while the degradation rate decreased due to the addition of Zn and Sr alloying elements and specific processing conditions. The superior mechanical properties and corrosion resistance of the new ZSr41 alloy make it a promising alloy for next-generation implant applications.  相似文献   

8.
Magnesium (Mg) alloys shows the lowest density among other engineering metallic materials. As a consequence, this light alloy has a promising future. However, these alloys have great affinity for oxygen and other chemical oxidizing agents. The limitation of low corrosion resistance restricts their practical applications. Extruded Mg alloy plates of 6 mm thick of AZ61A grade were butt welded using friction stir welding (FSW) process. Corrosion behavior of the welds was evaluated by conducting salt fog test in NaCl solution at different chloride ion concentrations, pH value and spraying time. Also an attempt was made to develop an empirical relationship to predict the corrosion rate of friction stir welded AZ61A magnesium alloy. Three factors and a central composite design were used to minimize the number of experimental conditions. Response surface method was used to develop their relationship. The developed relationship can be effectively used to predict the corrosion rate of friction stir weld AZ61A magnesium alloy at 95% confidence level.  相似文献   

9.
张雅静  时贵安  郭廷廷  陆前 《材料导报》2016,30(Z2):361-364
镁合金降解速率过快限制了其作为生物医用材料的应用,对镁合金降解速率的控制成为了研究的热点。采用仿生法在MgZnSrCa合金基体表面形成羟基磷灰石涂层。利用X射线衍射仪、扫描电子显微镜及能谱仪对涂层结构、形貌和成分进行分析和观察。通过失重法、析氢法、pH值测定等方法,研究不同涂层形貌的合金试样在人体模拟体液(SBF)中的降解速率。实验结果表明:羟基磷灰石(HA)涂层可以降低合金的降解速率,可以通过控制涂层形貌对合金的降解速率进行控制。  相似文献   

10.
In the present study, the effect of hydrofluoric acid (HF) treatment on the surface composition and corrosion behaviour of the magnesium alloy AZ 31 was investigated. The HF treatment of the samples was performed with various concentrations and at different treatment times. The samples surfaces were analysed by Fourier transform infrared spectroscopy, optical emission spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. The results showed the formation of hydroxides, oxides and compounds of the general formula Mg(OH)xF2 − x on the samples surfaces, as well as variations on impurities concentrations. The process led to distinct surfaces, each having its specific corrosion resistance, which was evaluated by electrochemical impedance spectroscopy and potentio-dynamic polarization. The most improved corrosion protection was achieved using the concentrations of 14 and 20 mol L− 1 and 24 h of treatment time, resulting in corrosion rates 20 times lower than those of untreated samples. These two solutions also resulted in an improved corrosion protection for further polymeric coatings, showing that this treatment is an excellent pre-treatment for corrosion protective layers on magnesium alloys.  相似文献   

11.
Magnesium alloys have got extensive attention as biodegradable implant materials due to their biodegradability in the physiological environment and similar elastic modulus to natural bone. But their poor corrosion resistance is a dominant problem that limits their clinical application due to the inhomogeneous distribution of the second phase. Nevertheless, after high pressure torsion (HPT) treatment, the second phase became nano-sized particles and distributed uniformly in grain interiors instead of along grain boundaries. The immersion tests indicated that the HPT-treated sample exhibited homogeneous corrosion resulting from the uniform distribution of the second phase. The results of the potentiodynamic polarization experiments showed that, compared with the as-cast alloy, the corrosion current density of the HPT-treated alloy decreased from 5.3 × 10− 4 A/cm2 to 3.3 × 10− 6 A/cm2.  相似文献   

12.
In this study, two types of magnesium alloys (WE43 and Mg3Gd) were compared with Heal-All membrane (a biodegradable membrane used in guided bone regeneration) in vitro to determine whether the alloys could be used as biodegradable membranes. Degradation behavior was assessed using immersion testing with simulated body fluid (SBF). Microstructural characteristics before and after immersion were evaluated through scanning electron microscopy, and degradation products were analyzed with energy dispersive spectrometry (EDS). To evaluate the biocompatibility of the three types of materials, we performed cytotoxicity, adhesion, and mineralization tests using human osteoblast-like MG63 cells. Immersion testing results showed no significant difference in degradation rate between WE43 and Mg3Gd alloys. However, both Mg alloys corroded faster than the Heal-All membrane, with pitting corrosion as the main corrosion mode for the alloys. Degradation products mainly included P- and Ca-containing apatites on the surface of WE43 and Mg3Gd, whereas these apatites were rarely detected on the surface of the Heal-All membrane. All three type of materials exhibited good biocompatibility. In the mineralization experiment, the alkaline phosphatase (ALP) activity of 10 % Mg3Gd extract was significantly higher than the extracts of the two other materials and the negative control. This study highlighted the potential of these Mg-REE alloys for uses in bone regeneration and further studies and refinements are obviously required.  相似文献   

13.
Mg–Nd–Zn–Zr alloy is a novel and promising biodegradable magnesium alloy due to good biocompatibility, desired uniform corrosion mode and outstanding corrosion resistance in simulated body fluid (SBF). However, the corrosion resistance and mechanical properties should be improved to meet the requirement of the biodegradable implants, such as plates, screws and cardiovascular stents. In the present study, double extrusion process was adopted to refine microstructure and improve mechanical properties of Mg–2.25Nd–0.11Zn–0.43Zr and Mg–2.70Nd–0.20Zn–0.41Zr alloys. The corrosion resistance of the alloys after double extrusion was also studied. The results show that the microstructure of the alloys under double extrusion becomes much finer and more homogeneous than those under once extrusion. The yield strength, ultimate tensile strength and elongation of the alloys under double extrusion are over 270 MPa, 300 MPa and 32%, respectively, indicating that outstanding mechanical properties of Mg–Nd–Zn–Zr alloy can be obtained by double extrusion. The results of immersion experiment and electrochemical measurements in SBF show that the corrosion resistance of Alloy 1 and Alloy 2 under double extrusion was increased by 7% and 8% respectively compared with those under just once extrusion.  相似文献   

14.
The thermal-treated hydroxyapatite (HA) particles, Mg and Zn powders were used to prepare the HA/Mg-Zn composites with different HA contents by means of powder metallurgy technology. The microstructures, formation phases, and corrosion behaviors in simulated body fluid (SBF) were studied in comparison with pure magnesium and HA/Mg composites fabricated by the same preparation technology. As a result, no evident reaction happened between HA particles and Mg matrix during sintering process, and Zn atoms diffused into Mg matrix to form a single phase Mg-Zn alloy matrix. The addition of HA particles changed the corrosion mechanism of Mg matrix. During the corrosion process, HA particles would adsorb PO43− and Ca2+ ions efficiently and induce the deposition of Ca-P compounds on the surface of composites. HA could improve the corrosion resistance of magnesium matrix composites in SBF and restrain the increase of pH of SBF. Furthermore, the addition of Zn was favorable to improve the corrosion resistance of HA/Mg composites due to the densification of composites and the formation of Mg-Zn alloy matrix.  相似文献   

15.
The samples made of a Mg-2.5wt.%Zn-0.5wt.%Zr alloy were immersed in the 20% hydrofluoric acid (HF) solution at room temperature for different time, with the aim of improving the properties of magnesium (Mg) alloy in applications as biomaterials. The corrosion resistance and in vitro biocompatibility of untreated and fluoride-coated samples were investigated. The results show that the optimum process is to immerse Mg alloys in the 20% HF solution for 6 h. After the immersion, a dense magnesium fluoride (MgF2) coating of 0.5 μm was synthesized on the surface of Mg-Zn-Zr alloy. Polarization tests recorded a reduction in the corrosion current density from 2.10 to 0.05 μA/cm2 due to the MgF2 protective coating. Immersion tests in the simulated body fluid (SBF) also reveal a much milder corrosion on the fluoride-coated samples, and its corrosion rate was calculated to be 0.05 mm/yr. Hemolysis test suggests that the conversion coated Mg alloy has no obvious hemolysis reaction. The hemolysis ratio (HR) of the samples decreases from 11.34% to 1.86% with the HF treatment, which meets the requirements of biomaterials (HR < 5%). The coculture of 3T3 fibroblasts with Mg alloy results in the adhesion and proliferation of cells on the surface of fluoride-coated samples. All the results show that the MgF2 conversion coating would markedly improve the corrosion resistance and in vitro biocompatibility of Mg-Zn-Zr alloy.  相似文献   

16.
Some large Mg–3.0Nd–0.2Zn–0.4Zr (NZ30K) magnesium alloy seamless tubes were prepared by forward extrusion. The as-extruded tubes were cooled in the air or by spraying liquid N2 after extrusion. The formability, mechanical and corrosive properties of the NZ30K magnesium alloy seamless tubes were investigated. The experimental results show that seamless NZ30K tubes with an outer diameter of 110 mm and inner diameter of 90 mm can be produced by forward extrusion and the tubes have good roundness, concentricity and straightness even without any straightening. The tensile results show that the maximum ultimate tensile strength, yield strength and elongation of the extruded tubes cooled in the air and by spraying liquid N2 are 306.3 and 314.6 MPa, 250.4 and 270.3 MPa, 14.2% and 15.6%, respectively. The corrosion rates of the as-extruded tubes cooled in the air and by spraying liquid N2 immersed in 5% NaCl solution for 3 days are 0.225 and 0.234 mg cm−2 day−1, respectively, which are a little inferior to the as-cast, T4 and T6 NZ30K alloys, but much lower than that of AZ91 alloy. Localized corrosion is suggested to be its corrosion pattern.  相似文献   

17.
Magnesium has attracted the attention of the biomaterials community as a potential biodegradable metallic candidate for use in stents and orthopedic applications. Alloying of Mg with metals such as Ca, Y and Zn, etc., to form alloy precursors is important to optimize its corrosion rate in electrolytic and aqueous environments to understand the alloy response in body fluid environments. In the current study, the chemical reactions of Mg-Me alloys (Me = Ca, Y, and Zn) with pure water have been investigated using the CALPHAD technique. A qualitative agreement between CALPHAD and first-principles results has been obtained. The CALPHAD method has also been employed to study the reactions of Mg alloys in the human blood fluid environment. The effects of alloying elements and compositions on the reaction enthalpies, reaction products, amount of gas release and gas compositions as well as the pH of the fluids have been systematically discussed and reported.  相似文献   

18.
The degradation rate is important to biodegradable magnesium materials. In this study, Zn is implanted using a cathodic arc source into pure magnesium at an accelerating voltage of 35 kV. The nominal ion implant fluence is 2.5 × 1017 ions cm−2. After Zn implantation, the degradation rate in simulated body fluids is increased significantly. It is postulated that because Zn exists in the metallic state in the implanted layer, the galvanic effect between the Zn rich surface region and magnesium matrix induces the observed accelerated degradation.  相似文献   

19.
Magnesium alloys are very biocompatiable and show promise for use in orthopaedic implant. Significant progress of research on bioabsorbable magnesium stents and orthopaedic bones has been achieved in recent years. The issues on degradation, hydrogen evolution, and corrosion fatigue and erosion corrosion of magnesium alloys and various influencing factors in simulated body fluid (SBF) are discussed. The research progress on magnesium and its alloys as biomaterials and miscellaneous approaches to enhancement in corrosion resistance is reviewed. Finally the challenges and strategy for their application as orthopaedic biomaterials are also proposed.  相似文献   

20.
The discrete secondary phases usually cause severe galvanic corrosion, thereby resulting in rapid degradation for Mg–Al alloys in orthopaedics application. In this study, CaO was introduced into Mg–Al–Zn (AZ61) alloy via selective laser melting (SLM) to ameliorate the characterisations of the secondary phases, with an aim to improve its corrosion behaviour. Results revealed that CaO reacted with Mg and Al in Mg–Al alloys during SLM, suppressing the formation of coarse Mg17Al12 phase and promoting the formation of (Mg, Al)2Ca phase. Meanwhile, the rapid solidification during SLM promoted the homogeneous precipitation of the second phase. As a result, inert (Mg, Al)2Ca phase homogeneously wrapped the Mg grains, which effectively protected them from the invasion of corrosion solution. Thus, the degradation rate was remarkably reduced from 0.073 to 0.031?mg?cm–2?h–1. Furthermore, AZ61-9CaO exhibited good cytocompatibility. This work suggested that AZ61-9CaO was promising candidates for orthopaedics implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号