首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vacuum ultraviolet excited luminescent properties of Eu3+, Tb3+, Dy3+, Sm3+ and Tm3+ in the matrices of Ca4Y6(SiO4)6O were investigated. The bands at about 173 nm in the vacuum ultraviolet excited spectra were attributed to host lattice absorption of the matrix Ca4Y6(SiO4)6O. For Eu3+-doped samples, the O2− → Eu3+ CTB was identified at 258 nm. Typical 4f-5d absorption bands in the region of 195-300 nm were observed in Tb3+-doped samples. For Dy3+-doped and Sm3+-doped samples, the broad excitation bands consisted of host absorptions, CTB and f-d transition. For Tm3+-doped samples, the O2− → Tm3+ CTB was located at 191 nm. About the color purity and emission intensity, Ca4Y6(SiO4)6O:Tb3+ is an attractive candidate of green light PDP phosphor, and Ca4Y6(SiO4)6O:Dy3+ has potential application in the field of mercury-free lamps.  相似文献   

2.
Very small nanoparticles (size 3-5 nm) of Y2Sn2O7, Y2Sn2O7:Tb3+ and Sb3+ co-doped Y2Sn2O7:Tb3+ were prepared at a relatively low temperature of 700 °C. Y2Sn2O7 host is characterised by an emission around 436 nm, which is arising from the oxygen vacancies present in the lattice. Tb3+ emission improves significantly when Sb3+ ions are co-doped with Y2Sn2O7:Tb3+ nanoparticles. Incorporation of Sb3+ ions at the Y3+ site of Y2Sn2O7 lattice and associated lattice distortion around Tb3+/Y3+ ions brought about by the difference in the stable coordination number of Sb3+ and Y3+ ions are responsible for the improved Tb3+ emission from the co-doped samples.  相似文献   

3.
RE3+-activated monoclinic Na3GdP2O8 (RE3+ = Tb3+, Dy3+, Eu3+, Sm3+) phosphors have been synthesized by a solid-state reaction method. Their photoluminescence properties in the vacuum ultraviolet (VUV) region were investigated. By analyzing their excitation spectra, the host-related absorption band was determined to be around 166 nm. The f-d transition bands and the charge transfer bands for Na3GdP2O8:RE3+ (RE3+ = Tb3+, Dy3+, Eu3+, Sm3+) were assigned and corroborated. For the sample Na3GdP2O8:5%Tb3+, the strong bands at around 202 and 221 nm are assigned to the 4f-5d spin-allowed transitions and the weak band at 266 nm is related to the spin-forbidden transition of Tb3+. For Na3GdP2O8:5%Dy3+, the broad band at 176 nm could be related to the f-d transitions of Dy3+ and the O2− → Dy3+ charge transfer band (CTB) besides the host-related absorption. In the excitation spectrum of Eu3+ doped sample, the O2− → Eu3+ CTB is observed to be at 245 nm. For the Sm3+ doped sample, the O2− → Sm3+ CTB is not distinguished obviously and is overlapped with the host-related absorption band.  相似文献   

4.
In this work, two Tb3+ activated green phosphors: Y2O3:Tb3+ and YBO3:Tb3+ were prepared by hydrothermal method. Photoluminescence properties of both phosphors were studied in details. Both phosphors exhibit similar luminescent characteristics symbolized by the dominant green emission at 545 nm. Concentration quenching occurs at the Tb3+ concentration of 1.60 atomic% and 2.57 atomic% for Y2O3:Tb3+ and YBO3:Tb3+, respectively. Luminescence decay properties were characterized to better understand the mechanism of concentration quenching. Based on the calculation, the concentration quenching in both phosphors was caused by the dipole–dipole interaction between Tb3+ ions.  相似文献   

5.
Luminescence properties of Y2−xGdxO3:Eu3+ (x = 0 to 2.0) thin films are investigated by site-selective laser excitation spectroscopy. The films were grown by pulsed laser deposition method on SiO2 (100) substrates. Cubic phase Y2O3 and Gd2O3 and monoclinic phase Gd2O3 are identified in the excitation spectrum of the 7F0 → 5D0 transition of Eu3+. The emission spectra of the 5D0 → 7FJ (J = 1 and 2) transition from individual Eu3+ centers were obtained by tuning the laser to resonance with each excitation line. The excitation line at around 580.60 nm corresponds to the line from Eu3+ with C2 site symmetry of cubic phase. New lines at 578.65 and 582.02 nm for the CS sites of Gd2O3 with monoclinic phase are observed by the incorporation of Gd in Y2O3 lattice. Energy transfer occurs between Eu3+ ions at the CS sites and from Eu3+ ions at the CS sites to those at the C2 site in Y2−xGdxO3.  相似文献   

6.
KY3F10:Yb3+/Tm3+/Er3+ upconversion nanocrystals are synthesized via a simple hydrothermal procedure. The nanocrystals emit the near equal energy white light with high brightness and favorable color balance when excited using a 980 nm continuous wave diode laser. The research of upconversion mechanism indicates that in addition to the energy transfer processes from Yb3+ to Tm3+ and Er3+, respectively, there exists a new process 1G4 (Tm3+) + 4I11/2 (Er3+) → 3H4 (Tm3+) + 4S3/2 (Er3+).  相似文献   

7.
Triply-doped single crystals KGd(WO4)2:Er3+/Yb3+/Tm3+, KGd(WO4)2:Tb3+/Yb3+/Tm3+ and KGd(WO4)2:Pr3+/Yb3+/Tm3+ were grown by the Top Seeded Solution Growth (TSSG) method, with an aim of getting efficient up-converted multicolored luminescence, which subsequently can be used for generation of white light. Such an aim determined the choice of the triply doped compounds: excitation of the Yb3+ ions in the infrared spectral region is followed by red, green and blue emission from other dopants. It was shown that all these systems exhibit multicolor up-conversion fluorescence under 980 nm laser irradiation. Detailed spectroscopic studies of their absorption and luminescence spectra were performed. From the analysis of the dependence of the intensity of fluorescence on the excitation power the conclusion was made about significant role played by the host’s conduction band and other possible defects of the KGd(WO4)2 crystal lattice in the up-conversion processes.  相似文献   

8.
Y6Si3O9N4:Ce3+ phosphor was prepared by a solid-state reaction in reductive atmosphere. X-ray powder diffraction (XRD) analysis confirmed the formation of Y6Si3O9N4:Ce3+. Scanning electron microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of irregular fine grains with an average size of about 5 μm. Photoluminescence (PL) measurements showed that the phosphor can be efficiently excited by near ultraviolet (UV) or blue light excitation, and exhibited bright green emission peaked at about 525 nm. Compared with Ce3+-doped Y4Si2O7N2 phosphors, Ce3+-doped Y6Si3O9N4 phosphors showed longer wavelengths of both excitation and emission. The Y6Si3O9N4:Ce3+ is a potential green-emitting phosphor for white LEDs.  相似文献   

9.
Eu2+ and Dy3+ ion co-doped Sr3Al2O6 red-emitting long afterglow phosphor was synthesized by sol-gel-combustion methods using Sr(NO3)2, Al(NO3)3·9H2O, Eu2O3, Dy2O3, H3BO3 and C6H8O7·H2O as raw materials. The crystalline structure of the phosphors were characterized by X-ray diffraction, luminescent properties of phosphors were analyzed by fluorescence spectrophotometer. The effect of excitation wavelengths on the luminescent properties of Sr3Al2O6:Eu2+, Dy3+ phosphors was discussed. The emission peak of Sr3Al2O6:Eu2+, Dy3+ phosphor lays at 516 nm under the excitation of 360 nm, and at 612 nm under the excitation of 468 nm. The results reveal that the Sr3Al2O6:Eu2+, Dy3+ phosphor will emit a yellow-green light upon UV illumination, and a bright red light upon visible light illumination. The emission mechanism was discussed according to the effect of nephelauxetic and crystal field on the 4f65d1 → 4f7 transition of the Eu2+ ions in Sr3Al2O6. The afterglow time of (Sr0.94Eu0.03Dy0.03)3 Al2O6 phosphors lasts for over 600s after the excited source was cut off.  相似文献   

10.
The luminescence lifetime of the 0.01 mol.%-0.1 mol.% Er3+- and 0–20 mol.% Y3+-codoped Al2O3 powders prepared at a sintering temperature of 900°C in a non-aqueous sol-gel method has been investigated to explore the enhanced mechanism of photoluminescence properties of the Er3+-doped Al2O3 by Y3+ codoping. For the 0.1 mol.% Er3+-Y3+-codoped Al2O3 powders, the measured lifetime of Er3+ gradually increases with increasing Y3+ concentration. Consequently, codoping with 20 mol.% Y3+ leads to an increase in the measured lifetime from 3.5 to 5.8 ms. By comparing the measured lifetime for different Er3+ concentrations in the Al2O3 powders, the radiative lifetime of both the Er3+-doped and the Er3+-Y3+-codoped Al2O3 powders is estimated to be about 7.5 ms. Infrared absorption spectra indicate that Y3+ codoping does not change the-OH content in the Er3+-Y3+-codoped Al2O3 powders. The prolonged luminescence lifetime of the 4I13/2 level of Er3+ in Er3+-doped Al2O3 powders by Y3+ codoping is ascribed to the decrease in the energy transfer rate between the Er3+ ions and the Er3+ and -OH, respectively, due to the suppressed interaction between Er3+ ions.  相似文献   

11.
Hexagonal microprisms of yttrium hydroxide (Y(OH)3) with tuned diameter and height have been successfully prepared for the first time via a facile hydrothermal process using sodium citrate as the shape modifying agent. Y(OH)3 microspheres with diameter of ca. 2.5 μm and microtubes with an average length about 13 μm, outer diameter about 3 μm and tube thickness about 800 nm were also obtained in current reaction systems. The possible formation mechanism for the Y(OH)3 microstructures was briefly proposed. Y2O3:Eu3+ (5%) microstructures with similar morphologies was obtained after thermal treatment of the as-prepared Y(OH)3:Eu3+ microstructures at 700 °C for 4 h. Results show that the relative emission intensity of the Y2O3:Eu3+ microprisms is about 8 times as those of the Y2O3:Eu3+ microtubes and microspheres under excitation of 259 nm ultraviolet light. The products were characterized by XRD, SEM, and EDS.  相似文献   

12.
Yb3+/Tm3+/Ho3+ tri-doped Gd2Mo3O9 phosphors were synthesized by the high-temperature solid-state method. Under 980 nm near-infrared excitation, the white-light emission can be observed, which is consists of the blue, green, and red UC emissions. The green and red emission at 547 nm and 660 nm originated from the transition of Ho3+ (5S2, 5F4 → 5I8 and 5F5 → 5I8) and the blue emission at 475 nm attributed to the transition of Tm3+ (5G4 → 5H6). In this experiment, we selected the optimum concentration ratio of the three rare earths for the bright white emission. The Commission internationale de L’Eclairage (CIE) coordinates for the samples were calculated, and chromaticity coordinates were very close to white light regions. We find that the calculated CIE color coordinates of the Yb3+/Tm3+/Ho3+ tri-doped Gd2Mo3O9 phosphors changed with the incident pump power from 400 mW/cm2 to 1000 mW/cm2. The upconversion luminescence mechanism of the samples was discussed on its spectral. The white light may be proved to be a candidate material for applications in various fields.  相似文献   

13.
Y2O3:Er3+,Yb3+ nanoparticles were synthesized using Pechini type sol-gel method and then characterized by XRD, TEM, SEM, Raman spectroscopy, and fluorescence spectrophotometer. Local temperature effect on upconversion luminescence intensities was theoretically analyzed and experimentally tested. These results indicate that a competition process between local temperature at luminescent spot and laser pump power density decides the development trend of upconversion luminescence intensity. Therefore, it can be concluded that the most intensive upconversion luminescence in Y2O3:Er3+,Yb3+ nanoparticles can be achieved at a certain pump power density, which should be slightly below a given constant value (the corresponding threshold of temperature).  相似文献   

14.
Different crystal structure of TeO2 nanoparticles were used as the host materials to prepare the Er3+/Yb3+ ions co-doped upconversion luminescent materials. The TeO2 nanoparticles mainly kept the original morphology and phase after having been co-doped the Er3+/Yb3+ ions. All the as-prepared TeO2:Er3+/Yb3+ nanoparticles showed the green emissions (525 nm, 545 nm) and red emission (667 nm) under 980 nm excitation. The green emissions at 525 nm, 545 nm and red emission at 667 nm were attributed to the 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of the Er3+ ions, respectively. For the α-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles, three-photon process involved in the green (2H11/2 → 4I15/2) emission, while two-photon process involved in the green (4S3/24I15/2) and red (4F9/2 → 4I15/2) emissions. For the β-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles, two-photon process involved in the green (2H11/2 → 4I15/2), green (4S3/2 → 4I15/2) and red (4F9/2 → 4I15/2) emissions. It suggested that the crystal structure of TeO2 nanoparticles had an effect on transition processes of the Er3+/Yb3+ ions. The emission intensities of the α-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles and β-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles were much stronger than those of the (α + β)-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles.  相似文献   

15.
16.
Rare-earth related centres have been investigated in K2YF5:Tb3+ crystals, exhibiting thermoluminescence (TL) below and above room temperature (RT), using electron paramagnetic resonance (EPR) spectroscopy at Q (34 GHz) and W-band (94 GHz). The spectra have been studied prior to irradiation, after exposure in the kGy range to X-rays at 77 K and subsequent pulse annealing up to 570 K. In addition to Gd3+, previously studied in detail, we identified Er3+ and Yb3+ centres as accidental impurities in as-grown crystals and determined their effective g tensors. The EPR spectra of irradiated and annealed crystals provide evidence for the production of at least three distinct Tb-related trapped hole centres, two of which could definitely be identified as Tb4+. Hence, we prove that the Tb3+ activator ions also act as hole traps in K2YF5. Pulse annealing experiments indicate that the TL above RT results from thermal release of electrons, recombining at these Tb4+ ions.  相似文献   

17.
This paper reports on the luminescence and microstructural features of oxide nano-crystalline (Y2O3:Eu3+) and submicron-sized (Y2SiO5:Ce3+,Tb3+) phosphor cores, produced by two different synthesis techniques, and subsequently coated by an inert shell of SiO2 using a sol-gel process. The shells mitigate the detrimental effect of the phosphor particle surfaces on the photoluminescence emission properties, thereby increasing luminous output by 20-90%, depending on the core composition and shell thickness. For Y2O3:Eu3+, uniformly shaped, narrow particle size distribution core/shell particles were successfully fabricated. The photoluminescence emission intensity of core nanoparticles increased with increasing Eu3+ activator concentration and the luminescence emission intensity of the core/shell particles was 20-50% higher than that of the core particles alone. For Y2SiO5:Ce3+,Tb3+, the core/shell particles showed enhancement of the luminescence emission intensity of 35-90% that of the core particles, depending on the SiO2 shell thickness.  相似文献   

18.
Aluminium oxide (Al2O3) films doped with CeCl3, TbCl3 and MnCl2 were deposited at 300 °C with the ultrasonic spray pyrolysis technique. The films were analysed using the X-ray diffraction technique and they exhibited a very broad band without any indication of crystallinity, typical of amorphous materials. Sensitization of Tb3+ and Mn2+ ions by Ce3+ ions gives rise to blue, green and red simultaneous emission when the film activated by such ions is excited with UV radiation. The overall efficiency of such energy transfer results to be about 85% upon excitation at 312 nm. Energy transfer from Ce3+ to Tb3+ ions through an electric dipole-quadrupole interaction mechanism appears to be more probable than the electric dipole-dipole one. A strong white light emission for the Al2O3:Ce3+(1.3 at.%):Tb3+(0.2 at.%):Mn2+(0.3 at.%) film under UV excitation is observed. The high efficiency of energy transfer from Ce3+ to Tb3+ and Mn2+ ions, resulting in cold white light emission (x = 0.30 and y = 0.32 chromaticity coordinates) makes the Ce3+, Tb3+ and Mn2+ triply doped Al2O3 film an interesting material for the design of efficient UV pumped phosphors for white light generation.  相似文献   

19.
Sr4Si3O8Cl4:Eu2+ and Sr3.5Mg0.5Si3O8Cl4:Eu2+ phosphors were prepared by a conventional solid state reaction (SS). Excited by 370 nm near-ultraviolet light, the phosphors show an efficient bluish-green wide-band emission centering at 484 nm, which originates from the 4f5d1 → 4f7 transition of Eu2+ ion. The excitation spectra of the phosphors are a broad band extending from 250 nm to 400 nm. Mg2+-codoping greatly enhances the bluish-green emission of the phosphors. An LED was fabricated by coating the Sr3.5Mg0.5Si3O8Cl4:0.08Eu2+ phosphor onto an ~ 370 nm-emitting InGaN chip. The LED exhibits bright bluish-green emission under a forward bias of 20 mA. The results indicate that Sr3.5Mg0.5Si3O8Cl4:0.08Eu2+ is a candidate as a bluish-green component for fabrication of NUV-based white LEDs.  相似文献   

20.
(Eu3+-Nb5+)-codoped TiO2 nanopowders have been prepared by Ar/O2 radio frequency (RF) thermal plasma oxidizing liquid precursor mists, with various addition contents of dopants (molar ratio of Eu3+:Nb5+ = 1:1). Characterizations have been performed by the combined studies of XRD, TEM, Raman spectra, UV-vis spectroscopy, and excitation and PL spectra. The plasma-generated nanopowders mainly consist of anatase and rutile polymorphs. Doping Nb5+ cannot have appreciable influence on Eu3+ solubility (0.5 at.%) in the TiO2 host lattice, but can significantly inhibit the increase of rutile weight fraction for TiO2. 617 nm PL intensity at 350 nm indirect excitation through energy transfer is considerably weaker than that at 467 nm direct excitation, indicating that a defect state level in the TiO2 host lattice might be lowered below the excited state of Eu3+ by doping Nb5+, which is conceivable from a relatively large amount of oxygen deficiencies yielded in the TiO2 host lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号