首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentially methylated sequences associated with imprinted genes are proposed to control genomic imprinting. A 2-kb region located 5' to the imprinted mouse H19 gene is hypermethylated on the inactive paternal allele throughout development. To determine whether this differentially methylated domain (DMD) is required for imprinted expression at the endogenous locus, we have generated mice harboring a 1.6-kb targeted deletion of the DMD and assayed for allelic expression of H19 and the linked, oppositely imprinted Igf2 gene. H19 is activated and Igf2 expression is reduced when the DMD deletion is paternally inherited; conversely, upon maternal transmission of the mutation, H19 expression is reduced and Igf2 is activated. Consistent with the DMD's hypothesized role of setting up the methylation imprint, the mutation also perturbs allele-specific methylation of the remaining H19 sequences. In conclusion, these experiments show that the H19 hypermethylated 5' flanking sequences are required to silence paternally derived H19. Additionally, these experiments demonstrate a novel role for the DMD on the maternal chromosome where it is required for the maximal expression of H19 and the silencing of Igf2. Thus, the H19 differentially methylated sequences are required for both H19 and Igf2 imprinting.  相似文献   

2.
Genomic imprinting is the process in mammals by which gamete-specific epigenetic modifications establish the differential expression of the two alleles of a gene. The tightly linked H19 and Igf2 genes are expressed in tissues of endodermal and mesodermal origin, with H19 expressed from the maternal chromosome and Igf2 expressed from the paternal chromosome. A model has been proposed to explain the reciprocal imprinting of these genes; in this model, expression of the genes is governed by competition between their promoters for a common set of enhancers. An extra set of enhancers might be predicted to relieve the competition, thereby eliminating imprinting. Here we tested this prediction by generating mice with a duplication of the endoderm-specific enhancers. The normally silent Igf2 gene on the maternal chromosome was expressed in liver, consistent with relief from competition. We then generated a maternal chromosome containing a single set of enhancers located equidistant from 1gf2 and H19; the direction of the imprint was reversed. Thus, the location of the enhancers determines the outcome of competition in liver, and the strength of the H19 promoter is not sufficient to silence Igf2.  相似文献   

3.
A stringent test for imprint control elements is to examine their function at ectopic loci in transgenic experiments. Igf2 and H19 are part of a larger imprinting region and as a first step, we examined these reciprocally imprinted genes in transgenic experiments using a 130 kb YAC clone. After paternal inheritance, H19 was appropriately repressed and Igf2 was expressed, irrespective of copy number or genetic background. After maternal inheritance H19 was consistently expressed, albeit with some variability. The levels of H19 expression per copy of the transgene inversely correlated with Igf2 (-lacZ) expression in cis. The consistent imprinting of H19 from this YAC contrasts with the previously described imprinting of mini-H19 transgenes, which only occurs at multi-copy loci, is inconsistent, and is prone to genetic background effects. We propose a novel model in which silencing of the H19 gene is the default state and its activation after maternal inheritance is the key mechanistic event for imprinting in this region. In addition, in situ analysis of the Igf2-lacZ reporter indicates that additional mesoderm-specific enhancers are present within the YAC clone. No obvious phenotype was detected from the excess gene dosage of H19.  相似文献   

4.
5.
The product of the H19 gene is an untranslated RNA that is expressed exclusively from the maternal chromosome during mammalian development. The H19 gene and its 5'-flanking sequence are required for the genomic imprinting of two paternally expressed genes, Ins-2 (encodes insulin-2) and Igf-2 (encodes insulin-like growth factor-2), that lie 90 and 115 kb 5' to the H19 gene, respectively. In this report, the role of the H19 gene in its own imprinting is investigated by introducing a Mus spretus H19 gene into heterologous locations in the mouse genome. Multiple copies of the transgene were sufficient for its paternal silencing and DNA methylation. Replacing the H19 structural gene with a luciferase reporter gene resulted in loss of imprinting of the transgene. That is, high expression and low levels of DNA methylation were observed upon both paternal and maternal inheritance. The removal of 701 bp at the 5' end of the structural gene resulted in a similar loss of paternal-specific DNA methylation, arguing that those sequences are required for both the establishment and maintenance of the sperm-specific gametic mark. The M. spretus H19 transgene could not rescue the loss of Igf-2 imprinting in trans in H19 deletion mice, implying a cis requirement for the H19 gene. In contrast to a previous report in which overexpression of a marked H19 gene was a prenatal lethal, expression of the M. spretus transgene had no deleterious effect, leading to the conclusion that the 20-base insertion in the marked gene created a neomorphic mutation.  相似文献   

6.
Maternal-specific loss of heterozygosity (LOH) and allelic imbalances [i.e., partial LOH (pLOH)] observed in SV40 T/t antigen-induced liver tumors suggests that an imprinted gene on chromosome 7 is involved in liver tumorigenesis. Maternal-specific LOH/pLOH may reflect the loss of a maternally expressed tumor suppressor gene or the acquisition of paternally active alleles of a growth promoter. In addition, two oppositely imprinted genes on distal chromosome 7, Igf2 and H19, are re-expressed in most liver tumors from an SV40 T/t antigen transgenic line (M11T-G). Igf2 is a paternally expressed growth promoter, and H19 is a maternally expressed gene that can suppress growth in some tumor cell lines. We studied the role of Igf2 during liver tumorigenesis by creating Igf2 (+/-) M11T-G mice. These mice are essentially null for Igf2 expression because imprinting normally precludes maternal Igf2 expression. M11T-G, Igf2 (+/-) males exhibit a 15-fold reduction in the frequency of large tumors. Igf2 (+/-) tumors do not express maternal Igf2, indicating rigid imprinting control in the liver. LOH/pLOH analysis was performed on the tumors and indicates that acquisition of paternally active Igf2 alleles is a major selective event for M11T-G liver tumorigenesis. This also implies the existence of an imprinted, maternally expressed tumor suppressor gene on chromosome 7 that is unlikely to be H19.  相似文献   

7.
8.
Genomic imprinting in mammals is believed to result from modifications to chromosomes during gametogenesis that inactivate the paternal or maternal allele. The genes encoding the insulin-like growth factor type 2 (Igf2) and its receptor (Igf2r) are reciprocally imprinted and expressed from the paternal and maternal genomes, respectively, in the fetal and adult mouse. We find that both genes are expressed in androgenetic, gynogenetic, and parthenogenetic preimplantation mouse embryos. These results indicate that inactivation of imprinted genes occurs postfertilization (most likely postimplantation) and that genomic imprinting and gene inactivation are separate processes. We propose that imprinting marks the chromosome so that regulatory factors expressed in cells at later times can recognize the imprint and selectively inactivate the maternal or paternal allele. For these genes, this finding invalidates models of genomic imprinting that require them to be inactive from the time of fertilization.  相似文献   

9.
The mouse H19 gene is expressed exclusively from the maternal allele. The imprinted expression of the endogenous gene can be recapitulated in mice by using a 14-kb transgene encompassing 4 kb of 5'-flanking sequence, 8 kb of 3'-flanking sequence, which includes the two endoderm-specific enhancers, and an internally deleted structural gene. We have generated multiple transgenic lines with this 14-kb transgene and found that high-copy-number transgenes most closely follow the imprinted expression of the endogenous gene. To determine which sequences are important for imprinted expression, deletions were introduced into the transgene. Deletion of the 5' region, where a differentially methylated sequence proposed to be important in determining parental-specific expression is located, resulted in transgenes that were expressed and hypomethylated, regardless of parental origin. A 6-kb transgene, which contains most of the differentially methylated sequence but lacks the 8-kb 3' region, was not expressed and also not methylated. These results indicate that expression of either the H19 transgene or a 3' DNA sequence is key to establishing the differential methylation pattern observed at the endogenous locus. Finally, methylation analysis of transgenic sperm DNA from the lines that are not imprinted reveals that the transgenes are not capable of establishing and maintaining the paternal methylation pattern observed for imprinted transgenes and the endogenous paternal allele. Thus, the imprinting of the H19 gene requires a complex set of elements including the region of differential methylation and the 3'-flanking sequence.  相似文献   

10.
11.
12.
13.
14.
The insulin-like growth factor 2 (Igf-2) and H19 genes are physically linked on mouse distal chromosome 7 and are reciprocally imprinted. We investigated the molecular basis of the parental imprints in somatic cell cultures derived from normal embryos or from their littermates with maternal uniparental disomy for distal chromosome 7 (MatDi7). In normal cells, the two genes appeared to respond to similar regulatory factor(s), since both genes were coordinately up-regulated upon growth arrest and cell clones which had lost expression of one gene had lost expression of the other. However, in a clone of MatDi7 cells (MatDi7 1-1a), which spontaneously began to express the maternally derived copy of Igf-2, Igf-2 and H19 were not coordinately regulated. MatDi7 1-1a cells showed de novo methylation of sites upstream of Igf-2 and also within the H19 promoter, epigenetic modifications normally seen only on the paternal chromosome. The data provide new experimental evidence for previously hypothesized mechanisms suggesting that Igf-2 and H19 are coordinately regulated.  相似文献   

15.
We have constructed mouse A9 hybrids containing a single normal human chromosome 15, via microcell-mediated chromosome transfer. Cytogenetic and DNA-polymorphic analyses identified mouse A9 hybrids that contained either a paternal or maternal human chromosome 15. Paternal specific expression of the known imprinted genes SNRPN (small nuclear ribonucleoprotein-associated polypeptide N gene) and IPW (imprinted gene in the Prader-Willi syndrome region) was maintained in the A9 hybrids. Using this system, we first demonstrated that human GABAAreceptor subunit genes, GABRB3 , GABRA5 and GABRG3 , were expressed exclusively from the paternal allele and that E6-AP (E6-associated protein or UBE3A ) was biallelically expressed. Moreover, the 5' portion of the GABRB3 gene was found to be hypermethylated on the paternal allele. Our data imply that GABAAreceptor subunit genes are imprinted and are possible candidates for Prader-Willi syndrome, and that this human monochromosomal hybrid system enables the efficient analysis of imprinted loci.  相似文献   

16.
The gene encoding the small nuclear ribonucleoprotein-associated polypeptide N (SNRPN) maps to the Prader-Willi syndrome critical region on chromosome 15 and is expressed preferentially from the paternal allele. A CpG island encompassing the first exon of SNRPN is methylated on the inactive maternal allele. DNA sequence was determined for a cosmid containing the first three exons of SNRPN and extending 20 kb upstream and 15 kb downstream from the CpG island. This region is extremely rich in Alu elements and other repetitive sequences and contains a single CpG island, which includes numerous short direct repeat sequences. Functional analysis of the first exon revealed strong promoter activity for a 260-bp fragment extending 207 bp upstream from the exon. In vitro methylation of this 260-bp fragment abolished promoter activity completely, suggesting that the silencing of the maternal SNRPN allele may be a direct consequence of methylation of the promoter region.  相似文献   

17.
Genetic evidence shows that the parent of origin-dependent expression patterns of the Igf2 and H19 genes is coordinated in mouse, such that H19 controls the activity of Igf2 in cis. Equally compelling evidence for a similar situation in humans is absent, although the frequently observed activation of the maternal IGF2 allele (ie., loss of imprinting) in Wilms' tumors has been attributed to the silencing of the maternal H19 locus. We show here that loss of H19 activity is generally a preneoplastic event, which may be linked with an overgrowth lesion that has been proposed to be permissive for tumor formation. Although our results document one instance in which a postneoplastic loss of H19 activity correlates with loss of IGF2 imprinting at the cellular level, it appears that inactivation of H19 is more generally independent of loss of imprinting of IGF2, at least in our specimens. Our results imply that inactivation of H19 correlates with blastema overgrowth and can be independent of a regulatory role with respect to IGF2 imprinting status in cis.  相似文献   

18.
The mouse U2af1-rs1 gene is an endogenous imprinted gene on the proximal region of chromosome 11. This gene is transcribed exclusively from the unmethylated paternal allele, while the methylated maternal allele is silent. An analysis of genome structure of this gene revealed that the whole gene is located in an intron of the Murr1 gene. Although none of the three human U2af1-related genes have been mapped to chromosome 2, the human homolog of Murr1 is assigned to chromosome 2. The mouse Murr1 gene is transcribed biallelically, and therefore it is not imprinted in neonatal mice. Allele-specific methylation is limited to a region around U2af1-rs1 in an intron of Murr1. These results suggest that in chromosomal homology and genomic imprinting, the U2af1-rs1 gene is distinct from the genome region surrounding it. We have proposed the neomorphic origin of the U2af1-rs1 gene by retrotransposition and the particular mechanism of genomic imprinting of ectopic genes.  相似文献   

19.
20.
The imprinted H19 gene is frequently inactivated in Wilms' tumors (WTs) either by chromosome 11p15.5 loss of heterozygosity (LOH) or by hypermethylation of the maternal allele and it is possible that there might be coordinate disruption of imprinting of multiple 11p15.5 genes in these tumors. To test this we have characterized total and allele-specific mRNA expression levels and DNA methylation of the 11p15.5 KIP2 gene in normal human tissues, WTs and embryonal rhabdomyosarcoma (RMS). Both KIP2 alleles are expressed but there is a bias with the maternal allele contributing 70-90% of mRNA. Tumors with LOH show moderate to marked reductions in KIP2 mRNA relative to control tissues and residual mRNA expression is from the imprinted paternal allele. Among WTs without LOH most cases with H19 inactivation also have reduced KIP2 expression and most cases with persistent H19 expression have high levels of KIP2 mRNA. In contrast to the extensive hypermethylation of the imprinted H19 allele, both KIP2 alleles are hypomethylated and WTs with biallelic H19 hypermethylation lack comparable hypermethylation of KIP2 DNA. 5-aza-2'-deoxycytidine (aza-C) increases H19 expression in RD RMS cells but does not activate KIP2 expression. These data indicate coordinately reduced expression of two linked paternally imprinted genes in most WTs and also suggest mechanistic differences in the maintenance of imprinting at these two loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号