首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interval type-2 fuzzy sets (T2 FS) play a central role in fuzzy sets as models for words and in engineering applications of T2 FSs. These fuzzy sets are characterized by their footprints of uncertainty (FOU), which in turn are characterized by their boundaries-upper and lower membership functions (MF). In this two-part paper, we focus on symmetric interval T2 FSs for which the centroid (which is an interval type-1 FS) provides a measure of its uncertainty. Intuitively, we anticipate that geometric properties about the FOU, such as its area and the center of gravities (centroids) of its upper and lower MFs, will be associated with the amount of uncertainty in such a T2 FS. The main purpose of this paper (Part 1) is to demonstrate that our intuition is correct and to quantify the centroid of a symmetric interval T2 FS, and consequently its uncertainty, with respect to such geometric properties. It is then possible, for the first time, to formulate and solve forward problems, i.e., to go from parametric interval T2 FS models to data with associated uncertainty bounds. We provide some solutions to such problems. These solutions are used in Part 2 to solve some inverse problems, i.e., to go from uncertain data to parametric interval T2 FS models (T2 fuzzistics)  相似文献   

2.
In Part 1 of this two-part paper, we bounded the centroid of a symmetric interval type-2 fuzzy set (T2 FS), and consequently its uncertainty, using geometric properties of its footprint of uncertainty (FOU). We then used these bounds to solve forward problems, i.e., to go from parametric interval T2 FS models to data. The main purpose of the present paper is to formulate and solve inverse problems, i.e., to go from uncertain data to parametric interval T2 FS models, which we call type-2 fuzzistics. Given interval data collected from people about a phrase, and the inherent uncertainties associated with that data, which can be described statistically using the first- and second-order statistics about the end-point data, we establish parametric FOUs such that their uncertainty bounds are directly connected to statistical uncertainty bounds. These results should find applicability in computing with words  相似文献   

3.
This paper presents a very practical type-2-fuzzistics methodology for obtaining interval type-2 fuzzy set (IT2 FS) models for words, one that is called an interval approach (IA). The basic idea of the IA is to collect interval endpoint data for a word from a group of subjects, map each subject's data interval into a prespecified type-1 (T1) person membership function, interpret the latter as an embedded T1 FS of an IT2 FS, and obtain a mathematical model for the footprint of uncertainty (FOU) for the word from these T1 FSs. The IA consists of two parts: the data part and the FS part. In the data part, the interval endpoint data are preprocessed, after which data statistics are computed for the surviving data intervals. In the FS part, the data are used to decide whether the word should be modeled as an interior, left-shoulder, or right-shoulder FOU. Then, the parameters of the respective embedded T1 MFs are determined using the data statistics and uncertainty measures for the T1 FS models. The derived T1 MFs are aggregated using union leading to an FOU for a word, and finally, a mathematical model is obtained for the FOU. In order that all researchers can either duplicate our results or use them in their research, the raw data used for our codebook examples, as well as a MATLAB M-file for the IA, have been put on the Internet at: http://sipi.usc.edu/$sim$mendel.   相似文献   

4.
Computing with words and its relationships with fuzzistics   总被引:1,自引:0,他引:1  
Words mean different things to different people, and so are uncertain. We, therefore, need a fuzzy set model for a word that has the potential to capture their uncertainties. In this paper I propose that an interval type-2 fuzzy set (IT2 FS) be used as a FS model of a word, because it is characterized by its footprint of uncertainty (FOU), and therefore has the potential to capture word uncertainties. Two approaches are presented for collecting data about a word from a group of subjects and then mapping that data into a FOU for that word. The person MF approach, in which each person provides their FOU for a word, is limited to fuzzy set experts because it requires the subject to be knowledgeable about fuzzy sets. The interval end-points approach, in which each person provides the end-points for an interval that they associate with a word on a prescribed scale is not limited to fuzzy set experts. Both approaches map data collected from subjects into a parsimonious parametric model of a FOU, and illustrate the combining of fuzzy sets and statistics—type-2 fuzzistics.  相似文献   

5.
Uncertainty measures for general Type-2 fuzzy sets   总被引:1,自引:0,他引:1  
Five uncertainty measures have previously been defined for interval Type-2 fuzzy sets (IT2 FSs), namely centroid, cardinality, fuzziness, variance and skewness. Based on a recently developed α-plane representation for a general T2 FS, this paper generalizes these definitions to such T2 FSs and, more importantly, derives a unified strategy for computing all different uncertainty measures with low complexity. The uncertainty measures of T2 FSs with different shaped Footprints of Uncertainty and different kinds of secondary membership functions (MFs) are computed and are given as examples. Observations and summaries are made for these examples, and a Summary Interval Uncertainty Measure for a general T2 FS is proposed to simplify the interpretations. Comparative studies of uncertainty measures for Quasi-Type-2 (QT2), IT2 and T2 FSs are also performed to examine the feasibility of approximating T2 FSs using QT2 or even IT2 FSs.  相似文献   

6.
Uncertainty measures for interval type-2 fuzzy sets   总被引:1,自引:0,他引:1  
Dongrui Wu 《Information Sciences》2007,177(23):5378-5393
Fuzziness (entropy) is a commonly used measure of uncertainty for type-1 fuzzy sets. For interval type-2 fuzzy sets (IT2 FSs), centroid, cardinality, fuzziness, variance and skewness are all measures of uncertainties. The centroid of an IT2 FS has been defined by Karnik and Mendel. In this paper, the other four concepts are defined. All definitions use a Representation Theorem for IT2 FSs. Formulas for computing the cardinality, fuzziness, variance and skewness of an IT2 FS are derived. These definitions should be useful in IT2 fuzzy logic systems design using the principles of uncertainty, and in measuring the similarity between two IT2 FSs.  相似文献   

7.
This paper presents a new extension of Gaussian mixture models (GMMs) based on type-2 fuzzy sets (T2 FSs) referred to as T2 FGMMs. The estimated parameters of the GMM may not accurately reflect the underlying distributions of the observations because of insufficient and noisy data in real-world problems. By three-dimensional membership functions of T2 FSs, T2 FGMMs use footprint of uncertainty (FOU) as well as interval secondary membership functions to handle GMMs uncertain mean vector or uncertain covariance matrix, and thus GMMs parameters vary anywhere in an interval with uniform possibilities. As a result, the likelihood of the T2 FGMM becomes an interval rather than a precise real number to account for GMMs uncertainty. These interval likelihoods are then processed by the generalized linear model (GLM) for classification decision-making. In this paper we focus on the role of the FOU in pattern classification. Multi-category classification on different data sets from UCI repository shows that T2 FGMMs are consistently as good as or better than GMMs in case of insufficient training data, and are also insensitive to different areas of the FOU. Based on T2 FGMMs, we extend hidden Markov models (HMMs) to type-2 fuzzy HMMs (T2 FHMMs). Phoneme classification in the babble noise shows that T2 FHMMs outperform classical HMMs in terms of the robustness and classification rate. We also find that the larger area of the FOU in T2 FHMMs with uncertain mean vectors performs better in classification when the signal-to-noise ratio is lower.  相似文献   

8.
The centroid of an interval type-2 fuzzy set (IT2 FS) provides a measure of the uncertainty of such a FS. Its calculation is very widely used in interval type-2 fuzzy logic systems. In this paper, we present properties about the centroid of an IT2 FS. We also illustrate many of the general results for a T2 fuzzy granule (FG) in order to develop some understanding about the uncertainty of the FG in terms of its vertical and horizontal dimensions. At present, the T2 FG is the only IT2 FS for which it is possible to obtain closed-form formulas for the centroid, and those formulas are in this paper.  相似文献   

9.
The focus of this paper is the linguistic weighted average (LWA), where the weights are always words modeled as interval type-2 fuzzy sets (IT2 FSs), and the attributes may also (but do not have to) be words modeled as IT2 FSs; consequently, the output of the LWA is an IT2 FS. The LWA can be viewed as a generalization of the fuzzy weighted average (FWA) where the type-1 fuzzy inputs are replaced by IT2 FSs. This paper presents the theory, algorithms, and an application of the LWA. It is shown that finding the LWA can be decomposed into finding two FWAs. Since the LWA can model more uncertainties, it should have wide applications in distributed and hierarchical decision-making.  相似文献   

10.
In the research domain of intelligent buildings and smart home, modeling and optimization of the thermal comfort and energy consumption are important issues. This paper presents a type-2 fuzzy method based data-driven strategy for the modeling and optimization of thermal comfort words and energy consumption. First, we propose a methodology to convert the interval survey data on thermal comfort words to the interval type-2 fuzzy sets (IT2 FSs) which can reflect the inter-personal and intra-personal uncertainties contained in the intervals. This data-driven strategy includes three steps: survey data collection and pre-processing, ambiguity-preserved conversion of the survey intervals to their representative type-1 fuzzy sets (T1 FSs), IT2 FS modeling. Then, using the IT2 FS models of thermal comfort words as antecedent parts, an evolving type-2 fuzzy model is constructed to reflect the online observed energy consumption data. Finally, a multiobjective optimization model is presented to recommend a reasonable temperature range that can give comfortable feeling while reducing energy consumption. The proposed method can be used to realize comfortable but energy-saving environment in smart home or intelligent buildings.  相似文献   

11.
The fuzzy analytic hierarchy process (FAHP) has been used to solve various multi-criteria decision-making problems where trapezoidal type-1 fuzzy sets are utilized in defining decision-makers’ linguistic judgment. Previous theories have suggested that interval type-2 fuzzy sets (IT2 FS) can offer an alternative that can handle vagueness and uncertainty. This paper proposes a new FAHP characterized by IT2 FS for linguistic variables. Differently from the typical FAHP, which directly utilizes trapezoidal type-1 fuzzy numbers, this method introduces IT2 FS to enhance judgment in the fuzzy decision-making environment. This new model includes linguistic variables in IT2 FS and a rank value method for normalizing upper and lower memberships of IT2 FS. The proposed model is illustrated by a numerical example of work safety evaluation. Comparable results are also presented to check the feasibility of the proposed method. It is shown that the ranking order of the proposed method is consistent with the other two methods despite difference in weight priorities.  相似文献   

12.
This paper 1) reviews the alpha-plane representation of a type-2 fuzzy set (T2 FS), which is a representation that is comparable to the alpha-cut representation of a type-1 FS (T1 FS) and is useful for both theoretical and computational studies of and for T2 FSs; 2) proves that set theoretic operations for T2 FSs can be computed using very simple alpha-plane computations that are the set theoretic operations for interval T2 (IT2) FSs; 3) reviews how the centroid of a T2 FS can be computed using alpha-plane computations that are also very simple because they can be performed using existing Karnik Mendel algorithms that are applied to each alpha-plane; 4) shows how many theoretically based geometrical properties can be obtained about the centroid, even before the centroid is computed; 5) provides examples that show that the mean value (defuzzified value) of the centroid can often be approximated by using the centroids of only 0 and 1 alpha -planes of a T2 FS; 6) examines a triangle quasi-T2 fuzzy logic system (Q-T2 FLS) whose secondary membership functions are triangles and for which all calculations use existing T1 or IT2 FS mathematics, and hence, they may be a good next step in the hierarchy of FLSs, from T1 to IT2 to T2; and 7) compares T1, IT2, and triangle Q-T2 FLSs to forecast noise-corrupted measurements of a chaotic Mackey-Glass time series.  相似文献   

13.
一种新型区间二型模糊神经网络隶属函数的设计   总被引:1,自引:0,他引:1  
Wang Jiajun 《自动化学报》2017,43(8):1425-1433
对于区间二型模糊神经网络(IT2FNN),论文给出了一种新型的模糊隶属函数(FMF)设计方法.通过所设计的模糊隶属函数,可以衍生出三种区间二型模糊隶属函数(IT2FMF).每种区间二型模糊隶属函数都具有不同的不确定域.论文将三种衍生模糊隶属函数应用于简化区间二型模糊神经网络辨识两个非线性系统.通过仿真,将衍生区间二型模糊隶属函数的辨识性能与高斯和椭圆型模糊隶属函数进行了对比.仿真结果表明,通过调节简化区间二型模糊神经网络的参数,本文所设计的区间二型模糊隶属函数比高斯和椭圆型模糊隶属函数具有更好的辨识性能.  相似文献   

14.
Interval type-2 fuzzy logic controllers (IT2-FLCs) have been attracting a lot of attention. However, challenges in designing IT2-FLCs still remain. One of the main challenges is to choose the appropriate FOU shape for interval type-2 fuzzy sets (IT2-FSs). This paper aims to analyse the differences in control performance between three IT2 fuzzy PI controllers (IT2-F-PICs) with different FOU shapes as antecedent sets, namely the triangular top wide IT2 fuzzy set, the triangular bottom wide IT2 fuzzy set and the trapezoidal (also called parallel) IT2 fuzzy set. First, the analytical structures of these IT2-FLCs are derived and the mathematical input–output equations are obtained. Three interesting differences between the analytical structures and input–output relationship of the IT2-F-PICs are then presented. From the differences in the analytical structures of the three IT2-F-PICs and numerical simulation results, it is demonstrated that IT2-F-PICs with trapezoidal (IT2-F-PI-P) and triangular bottom wide (IT2-F-PI-BW) antecedent sets with the potential to provide faster transient response and faster settling time than the IT2-F-PICs with triangular top wide (IT2-F-PI-TW). In addition, IT2-F-PI-P is better able to handle plant uncertainties and disturbances than IT2-F-PI-BW and IT2-F-PI-TW. The contribution of this paper is to provide insights into the performance differences between different FOU shaped controllers, which in turns allowing control designers to select the appropriate FOU shape in order to meet design requirements.  相似文献   

15.
Type-2 fuzzy sets and systems: an overview   总被引:1,自引:0,他引:1  
This paper provides an introduction to and an overview of type-2 fuzzy sets (T2 FS) and systems. It does this by answering the following questions: What is a T2 FS and how is it different from a T1 FS? Is there new terminology for a T2 FS? Are there important representations of a T2 FS and, if so, why are they important? How and why are T2 FSs used in a rule-based system? What are the detailed computations for an interval T2 fuzzy logic system (IT2 FLS) and are they easy to understand? Is it possible to have an IT2 FLS without type reduction? How do we wrap this up and where can we go to learn more?  相似文献   

16.
This paper proposes a new reinforcement-learning method using online rule generation and Q-value-aided ant colony optimization (ORGQACO) for fuzzy controller design. The fuzzy controller is based on an interval type-2 fuzzy system (IT2FS). The antecedent part in the designed IT2FS uses interval type-2 fuzzy sets to improve controller robustness to noise. There are initially no fuzzy rules in the IT2FS. The ORGQACO concurrently designs both the structure and parameters of an IT2FS. We propose an online interval type-2 rule generation method for the evolution of system structure and flexible partitioning of the input space. Consequent part parameters in an IT2FS are designed using Q-values and the reinforcement local-global ant colony optimization algorithm. This algorithm selects the consequent part from a set of candidate actions according to ant pheromone trails and Q-values, both of which are updated using reinforcement signals. The ORGQACO design method is applied to the following three control problems: (1) truck-backing control; (2) magnetic-levitation control; and (3) chaotic-system control. The ORGQACO is compared with other reinforcement-learning methods to verify its efficiency and effectiveness. Comparisons with type-1 fuzzy systems verify the noise robustness property of using an IT2FS.  相似文献   

17.
广义区间二型模糊集合的词计算   总被引:3,自引:1,他引:2  
莫红  王涛 《自动化学报》2012,38(5):707-715
普通的模糊集合是点值为二维的一型模糊集合,二型模糊集合(Type-2 fuzzy sets, T2 FS)是点值为三维的模糊集合, T2 FS比相应的一型难以理解和计算. 为了让人们更好地理解T2 FS并推广其应用, 本文提出了广义区间二型模糊集合(Generalized interval type-2 fuzzy sets, GIT2 FS)的定义, 并将其分成三类:离散型、半离散型及连续型,分别给出相应的数学表达式与扩展原理公式,并得到了GIT2 FS在两种不同的模糊逻辑算子下的词计算.  相似文献   

18.
Interval Type-2 Fuzzy Logic Systems Made Simple   总被引:9,自引:0,他引:9  
To date, because of the computational complexity of using a general type-2 fuzzy set (T2 FS) in a T2 fuzzy logic system (FLS), most people only use an interval T2 FS, the result being an interval T2 FLS (IT2 FLS). Unfortunately, there is a heavy educational burden even to using an IT2 FLS. This burden has to do with first having to learn general T2 FS mathematics, and then specializing it to an IT2 FSs. In retrospect, we believe that requiring a person to use T2 FS mathematics represents a barrier to the use of an IT2 FLS. In this paper, we demonstrate that it is unnecessary to take the route from general T2 FS to IT2 FS, and that all of the results that are needed to implement an IT2 FLS can be obtained using T1 FS mathematics. As such, this paper is a novel tutorial that makes an IT2 FLS much more accessible to all readers of this journal. We can now develop an IT2 FLS in a much more straightforward way  相似文献   

19.
20.
In this paper, novel interval and general type-2 self-organizing fuzzy logic controllers (SOFLCs) are proposed for the automatic control of anesthesia during surgical procedures. The type-2 SOFLC is a hierarchical adaptive fuzzy controller able to generate and modify its rule-base in response to the controller's performance. The type-2 SOFLC uses type-2 fuzzy sets derived from real surgical data capturing patient variability in monitored physiological parameters during anesthetic sedation, which are used to define the footprint of uncertainty (FOU) of the type-2 fuzzy sets. Experimental simulations were carried out to evaluate the performance of the type-2 SOFLCs in their ability to control anesthetic delivery rates for maintaining desired physiological set points for anesthesia (muscle relaxation and blood pressure) under signal and patient noise. Results show that the type-2 SOFLCs can perform well and outperform previous type-1 SOFLC and comparative approaches for anesthesia control producing lower performance errors while using better defined rules in regulating anesthesia set points while handling the control uncertainties. The results are further supported by statistical analysis which also show that zSlices general type-2 SOFLCs are able to outperform interval type-2 SOFLC in terms of their steady state performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号