共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2020,45(10):5816-5828
This investigation reports the thermodynamic exploration of a novel three-step GeO2/GeO water splitting (WS) cycle. The thermodynamic computations were performed by using the data obtained from HSC Chemistry thermodynamic software. Numerous process parameters allied with the GeO2/GeO WS cycle were estimated by drifting the thermal reduction () and water splitting temperature (). The entire analysis was divided into two section: a) equilibrium analysis and b) efficiency analysis. The equilibrium analysis was useful to determine the and required for the initiation of the thermal reduction (TR) of GeO2 and re-oxidation of GeO via WS reaction. Furthermore, the influence of on the required for the comprehensive dissociation of GeO2 into GeO and O2 was also studied. The efficiency analysis was conducted by drifting the and in the range of 2080 to 1280 K and 500–1000 K, respectively. Obtained results indicate that the minimum and maximum in case of the GeO2/GeO WS cycle can be attained when the TR of GeO2 was carried out at 1280 K and the WS reaction was performed at 1000 K. This was observed to be higher than the SnO2/SnO WS cycle (39.3%) and lower than the ZnO/Zn WS cycle (49.3%). The can be further decreased to 463.9 kW and the can be upsurged up to 61.5% by applying 50% heat recuperation. 相似文献
2.
《International Journal of Hydrogen Energy》2019,44(20):9841-9848
Electricity generation via direct conversion of solar energy with zero carbon dioxide emission is essential from the aspect of energy supply security as well as from the aspect of environmental protection. Therefore, this paper presents a system for hydrogen production via water electrolysis using a 960 Wp solar power plant. The results obtained from the monitoring of photovoltaic modules mounted in pairs on a fixed, a single-axis and a dual-axis solar tracker were examined to determine if there is a possibility to couple them with an electrolyzer. Energy performance of each photovoltaic system was recorded and analyzed during a period of one year, and the data were monitored on an online software service. Estimated parameters, such as monthly solar irradiance, solar electricity production, optimal angle, monthly ambient temperature, and capacity factor were compared to the observed data. In order to get energy efficiency as high as possible, a novel alkaline electrolyzer of bipolar design was constructed. Its design and operating UI characteristic are described. The operating UI characteristics of photovoltaic modules were tuned to the electrolyzer operating UI characteristic to maximize production. The calculated hydrogen rate of production was 1.138 g per hour. During the study the system produced 1.234 MWh of energy, with calculated of 1.31 MWh , which could power 122 houses, and has offset 906 kg of carbon or an equivalent of 23 trees. 相似文献
3.
Dayana DArc de Fátima Palhares Luiz Gustavo Martins Vieira Jo?o Jorge Ribeiro Damasceno 《International Journal of Hydrogen Energy》2018,43(9):4265-4275
Electrolysis is a relatively simple process for obtaining hydrogen and can be combined with use of renewable energy sources, such as solar photovoltaic energy, for clean, sustainable gas production. This study designed a cylindrical electrolytic cell made of acrylic and 304 stainless steel electrodes to produce hydrogen. The electrolyte used was sodium hydroxide (NaOH 2–5 mol L?1), and the direct current voltages applied were 2.0, 2.7, and 3.4 V. The maximum hydrogen production was achieved with 5.0 mol L?1 NaOH and 3.4 V electric voltage. The system was connected to a photovoltaic panel of 20 W and exposed to solar radiation from 10 a.m. to 2 p.m. Approximately 2 L of hydrogen was produced within a period, and an average irradiance of 800.0 W m?2 ± 60 W m?2 was achieved. The system was stable throughout the tests. 相似文献
4.
NiS2 nanoparticles as noble metal-free co-catalysts were deposited onto the CdLa2S4 nanocrystals through a hydrothermal process. The loading of NiS2 co-catalyst resulted in remarkable enhancement for H2 production over the CdLa2S4 photocatalyst under visible light irradiation. The optimal hybrid photocatalyst with 2 wt% NiS2 loading exhibited a H2 production rate of 2.5 mmol h−1 g−1, which was more than 3 times higher than that of the pristine CdLa2S4 photocatalyst. The promoted photocatalytic H2 production by NiS2-loading is attributed to the enhanced separation of photogenerated electrons and holes as well as the activation effect of NiS2 for H2 evolution. 相似文献
5.
《International Journal of Hydrogen Energy》2023,48(8):2929-2948
The paper discusses the feasibility of the use solar energy into hydrogen production using a photovoltaic energy system in the four main cities of Iraq. An off-grid photovoltaic system with a capacity of 22.0 kWp, an 8.0 kW alkaline electrolyser, a hydrogen compressor, and a hydrogen tank were simulated for one year in order to generate hydrogen. A mathematical model of the proposed system behavior is presented using MATLAB/Simulink, considering nine years from the 2021 to 2030 project span using hourly experimental weather data. The outcomes demonstrated that the annual hydrogen production ranged from 1713.92 kg up to 1891.12 kg, oxygen production ranged from 1199.74 to 1323.78 kg, and water consumption ranged from 7139.91 L to 7877.29 L. The hydrogen evaluated costs equal to $3.79/kg. The results show that the optimum site for solar hydrogen production systems can be established in the midwest of Iraq and in other cities with similar climates, especially those that get a lot of sunlight. 相似文献
6.
Energy and exergy analyses are reported of hydrogen production via an ocean thermal energy conversion (OTEC) system coupled with a solar-enhanced proton exchange membrane (PEM) electrolyzer. This system is composed of a turbine, an evaporator, a condenser, a pump, a solar collector and a PEM electrolyzer. Electricity is generated in the turbine, which is used by the PEM electrolyzer to produce hydrogen. A simulation program using Matlab software is developed to model the PEM electrolyzer and OTEC system. The simulation model for the PEM electrolyzer used in this study is validated with experimental data from the literature. The amount of hydrogen produced, the exergy destruction of each component and the overall system, and the exergy efficiency of the system are calculated. To better understand the effect of various parameters on system performance, a parametric analysis is carried out. The energy and exergy efficiencies of the integrated OTEC system are 3.6% and 22.7% respectively, and the exergy efficiency of the PEM electrolyzer is about 56.5% while the amount of hydrogen produced by it is 1.2 kg/h. 相似文献
7.
Dengwei Jing Liejin GuoLiang Zhao Ximin ZhangHuan Liu Mingtao LiShaohua Shen Guanjie LiuXiaowei Hu Xianghui ZhangKai Zhang Lijin MaPenghui Guo 《International Journal of Hydrogen Energy》2010
Photocatalytic water splitting with solar light is one of the most promising technologies for solar hydrogen production. From a systematic point of view, whether it is photocatalyst and reaction system development or the reactor-related design, the essentials could be summarized as: photon transfer limitations and mass transfer limitations (in the case of liquid phase reactions). Optimization of these two issues are therefore given special attention throughout our study. In this review, the state of the art for the research of photocatalytic hydrogen production, both outcomes and challenges in this field, were briefly reviewed. Research progress of our lab, from fundamental study of photocatalyst preparation to reactor configuration and pilot level demonstration, were introduced, showing the complete process of our effort for this technology to be economic viable in the near future. Our systematic and continuous study in this field lead to the development of a Compound Parabolic Concentrator (CPC) based photocatalytic hydrogen production solar rector for the first time. We have demonstrated the feasibility for efficient photocatalytic hydrogen production under direct solar light. The exiting challenges and difficulties for this technology to proceed from successful laboratory photocatalysis set-up up to an industrially relevant scale are also proposed. These issues have been the object of our research and would also be the direction of our study in future. 相似文献
8.
Films of polycrystalline Bi2S3 have been prepared onto bismuth and platinum substrates by electrodeposition from an aqueous sulfide bath. The films were thin, uniform and well adhered. Bi2S3 is a direct band gap semiconductor with a value of 1.28 eV optimally matched with the solar spectrum. The photoelectrochemical study was undertaken for the generation of hydrogen by using illuminated n-Bi2S3 particles; it was found that hydrogen evolution depends highly on the synthesis method of powder. Impregnation of platinum onto Bi2S3 shows a production enhancement of about 25%. The most active photocatalyst, prepared by a solvent thermal process and loaded with Pt in 0.1 M S2− alkaline electrolyte, yields 2.13×10−2 ml mg−1 of H2 after 4 h of irradiation with the visible output of a 500 W halogen lamp. 相似文献
9.
The addition of MOx (M: di- or tri-valent transition metal ion) into cerium dioxide (CeO2) enhanced the ability of CeO2 for the oxygen (O2)-releasing reaction at lower temperature and swift hydrogen (H2)-generation reaction. CeO2–MOx (M=Mn, Fe, Ni, Cu) reactive ceramics having high melting points were synthesized with the combustion method from their nitrates for solar H2 production. The prepared CeO2–MOx samples were solid solutions between CeO2 and MOx with the fluorite structure through the X-ray diffractometry measurement. Two-step water-splitting reactions with CeO2–MOx reactive ceramics proceeded at 1573–1773 K for the O2-releasing step and at 1273 K for the H2-generation step by irradiation of infrared image furnace as a solar simulator. The amounts of O2 evolved in the O2-releasing reaction with CeO2–MOx increased with an increase in the reaction temperature. The amounts of H2 evolved in the H2-generation reaction with CeO2–MOx systems except for M=Cu were more than that of CeO2 system after the O2-releasing reaction at the temperatures of 1673 and 1773 K. The amounts of H2 evolved in the H2-generation reaction with CeO2–MnO and CeO2–NiO systems were more than those of CeO2–Fe2O3, CeO2–CuO and CeO2 systems after the O2-releasing reaction at the temperature of 1573 K. The amounts of evolved H2 after the O2-releasing reaction at the temperature of 1773 K in cm3 per gram of CeO2–MOx were 0.975–3.77 cm3/g. The O2-releasing reaction at 1673 K and H2-generation reaction at 1273 K with CeO2–Fe2O3 proceeded with repetition of 4 times stoichiometrically. 相似文献
10.
A thermochemical two-step water-splitting cycle using a redox metal oxide was examined for Ni(II) ferrites or NixFe3−xO4 (0 x 1) for the purpose of converting solar high-temperature heat to hydrogen. The Ni(II) ferrite was decomposed to Ni-doped wustite (NiyFe1−yO) at 1400 °C under an inert atmosphere in the first thermal-reduction step of the cycle; it was then reoxidized with steam to generate hydrogen at 1000 °C in the second water-decomposition step. Although nondoped Fe3O4 powders formed a nonporous, dense mass of iron oxide by the fusion of FeO and its subsequent solidification after the thermal-reduction step, Ni(II)–ferrite powders were converted into a porous, soft mass after the step. This was probably because Ni doping in the FeO phase raised the melting point of wustite above 1400 °C. Supporting the Ni(II) ferrites on m-ZrO2 (monoclinic zirconia) alleviated the high-temperature sintering of iron oxide; as a result, the supported ferrites exhibited greater reactivity and assisted the repeatability of the cyclic water splitting process as compared to the unsupported ferrites. The reactivity increased with the doping value x, and was maximum at x = 1.0 in the NixFe3−xO4/m-ZrO2 system. 相似文献
11.
Samir Touili Ahmed Alami Merrouni Alae Azouzoute Youssef El Hassouani Abdel-illah Amrani 《International Journal of Hydrogen Energy》2018,43(51):22777-22796
In this study, a techno-economic analysis of the capacity of Morocco to produce hydrogen from solar energy has been conducted. For this reason, a Photovoltaic-electrolyze system was selected and the electricity and hydrogen production were simulated for 76 sites scattered all over the country. The Global Horizontal Irradiation (GHI) data used for the simulation were extracted from the CAMS-Rad satellite database and meteorological stations at ground level.Before simulations, the accuracy of the GHI values from the satellite dataset has been checked, and their uncertainties was calculated against accurate data measured in-situ. After that, the simulated values of the hydrogen mass were interpolated using a GIS software to create a Hydrogen production map of Morocco. Finally, an economical investigation of electricity and hydrogen production costs has been conducted by calculating the and .Results show that the satellite dataset has a mean average deviation of 6.8% which is a very acceptable error rang. Also, it was found that Morocco have a high potential for hydrogen production, with a daily annual production that varies between 6489 and 8308 Tons/km2. Moreover, the cost of electricity and hydrogen production in the country are in the range of 0.077–0.099 $/kWh and 5.79–4.64 $/Kg respectively.The findings of this study are with high importance as they provide an overall perspective of the country potential of hydrogen production for policy makers and investors, and it was motivated by the lack of information on the subject in the literature since it's, at the best of our knowledge, the first study assessing the hydrogen production from solar for the whole country. 相似文献
12.
Hai-Cai Huang Chuan-Lu Yang Mei-Shan Wang Xiao-Guang Ma 《International Journal of Hydrogen Energy》2017,42(23):15464-15470
The enhanced photocatalytic performance of Se-/In-doped TlAsS2 to generate hydrogen from water splitting is investigated based on the first-principle density functional theory calculation with meta-GGA + TPSS. Three structures, namely, pristine TlAsS2 and substitutions of S with Se and Tl with In, are considered. Their geometrical lattices are fully optimized and their electronic and optical properties are calculated to evaluate the photocatalytic efficiency for hydrogen generation. Results show that the three structures can be used for solar energy photocatalysis to generate hydrogen from water splitting. Moreover, the Se- and In-doped atoms can strengthen the absorption coefficient within the visible light range. Therefore, these structures are promising catalysts for generating hydrogen from water splitting through solar energy photocatalysis. 相似文献
13.
In most current fossil-based hydrogen production methods, the thermal energy required by the endothermic processes of hydrogen production cycles is supplied by the combustion of a portion of the same fossil fuel feedstock. This increases the fossil fuel consumption and greenhouse gas emissions. This paper analyzes the thermodynamics of several typical fossil fuel-based hydrogen production methods such as steam methane reforming, coal gasification, methane dissociation, and off-gas reforming, to quantify the potential savings of fossil fuels and CO2 emissions associated with the thermal energy requirement. Then matching the heat quality and quantity by solar thermal energy for different processes is examined. It is concluded that steam generation and superheating by solar energy for the supply of gaseous reactants to the hydrogen production cycles is particularly attractive due to the engineering maturity and simplicity. It is also concluded that steam-methane reforming may have fewer engineering challenges because of its single-phase reaction, if the endothermic reaction enthalpy of syngas production step (CO and H2) of coal gasification and steam methane reforming is provided by solar thermal energy. Various solar thermal energy based reactors are discussed for different types of production cycles as well. 相似文献
14.
Gold nanoparticles were deposited on potassium titanoniobate, KTiNbO5 using deposition-precipitation (DP), conventional impregnation (IMP) and photodeposition method in order to improve photocatalytic hydrogen production from water splitting. The effect of synthesis pH value of a HAuCl4 aqueous solution used in the DP process on the morphology of gold nanoparticles, optical property and photocatalytic activity of water splitting under UV light irradiation was investigated. These catalysts were characterized by powder X-ray diffraction patterns (XRD), inductively coupled plasma mass spectrometry (ICP-MS), UV–visible spectroscopy (UV–vis), and Transmission Electron Microscopy (TEM). The Au/KTiNbO5 catalysts prepared by the DP method consisted of a good metal–semiconductor interface which allowed for a much higher efficient electron-hole separation. The 0.63 wt% Au/KTiNbO5 catalyst prepared by the DP method at pH = 10 showed a uniform dispersion of gold nanoparticles with an average gold particle size of 4.2 nm and exhibited an ultra-high photocatalytic water splitting activity (3522 μmol g−1 h−1), about 47 times higher than that exhibited by the KTiNbO5 photocatalyst. 相似文献
15.
The thermochemical dissociation of CO2 and H2O from reactive SnO nanopowders is studied via thermogravimetry analysis. SnO is first produced by solar thermal dissociation of SnO2 using concentrated solar radiation as the high-temperature energy source. The process targets the production of CO and H2 in separate reactions using SnO as the oxygen carrier and the syngas can be further processed to various synthetic liquid fuels. The global process thus converts and upgrades H2O and captured CO2 feedstock into solar chemical fuels from high-temperature solar heat only, since the intermediate oxide is not consumed but recycled in the overall process. The objective of the study was the kinetic characterization of the H2O and CO2 reduction reactions using reactive SnO nanopowders synthesized in a high-temperature solar chemical reactor. SnO conversion up to 88% was measured during H2O reduction at 973 K and an activation energy of 51 ± 7 kJ/mol was identified in the temperature range of 798-923 K. Regarding CO2 reduction, a higher temperature was required to reach similar SnO conversion (88% at 1073 K) and the activation energy was found to be 88 ± 7 kJ/mol in the range of 973-1173 K with a CO2 reaction order of 0.96. The SnO conversion and the reaction rate were improved when increasing the temperature or the reacting gas mole fraction. Using active SnO nanopowders thus allowed for efficient and rapid fuel production kinetics from H2O and CO2. 相似文献
16.
17.
Cheng Ziming Wang Fuqiang Liang Huaxu Hu Shengpeng Lin Bo Tan Jianyu Li Hongyang 《International Journal of Hydrogen Energy》2018,43(31):14439-14450
The ultrasonic-assisted solar photochemical splitting of water had been explored in recent years to enhance hydrogen production efficiency. In this study, a photon-absorption-based study was conducted to investigate the mechanism of the ultrasonic-assisted solar photochemical splitting of water. An elaborate test bench for temperature-controlled, ultrasonic-assisted solar photochemical water splitting was designed, set up, and tested. A comparison of the hydrogen production between the ultrasonic-assisted and conventional solar photochemical splitting of water was carried out. The effective nanoparticle size before and after ultrasonic vibration, as well as after solar photocatalysis, was analyzed. Furthermore, the spectral absorptivity of the nanofluids before and after ultrasonic vibration, as well as after solar photocatalysis, was investigated by both experimental and numerical methods. The investigation indicated that the improved particle dispersion in the solution prepared by ultrasonication allowed the absorbance of more incoming sunlight. The amount of hydrogen produced by the ultrasonic-assisted hydrogen production was 3.45 times that of conventional solar photochemical splitting of water without pre-ultrasonicated. Besides, an effective spectral absorptivity coefficient was proposed as a modified measure of spectral absorptivity. In addition, the optimal particle diameter was optimized using the Monte Carlo ray tracing method to identify the best light absorption performance. 相似文献
18.
With the help of the typical model of a water electrolysis hydrogen production system, which mainly includes the electrolysis cell, separator, and heat exchangers, three expressions of the system efficiency in literature are compared and evaluated, from which one reasonable expression of the efficiency is chosen and directly used to analyze the performance of a water electrolysis hydrogen production system under different operation conditions. Several new configurations of a water electrolysis system are put forward and the problem how to calculate the efficiencies of these configurations is solved. Moreover, a solid oxide steam electrolyzer system (SOSES) for hydrogen production is taken as an example to expound that the different configurations of a water electrolysis system should be adopted for different operation conditions. The results obtained here may provide some guidance for the optimum design and operation of water electrolysis systems for hydrogen production. 相似文献
19.
Nobuyuki Gokon Tetsuro MatagaNobuyuki Kondo Tatsuya Kodama 《International Journal of Hydrogen Energy》2011,36(8):4757-4767
Thermochemical two-step water splitting using a redox system of iron-based oxides or ferrites is a promising process for producing hydrogen without CO2 emission by the use of high-temperature solar heat as an energy source and water as a chemical source. In this study, thermochemical hydrogen production by two-step water splitting was demonstrated on a laboratory scale by using a single reactor of an internally circulating fluidized bed. This involved the successive reactions of thermal-reduction (T-R) and water-decomposition (W-D). The internally circulating fluidized bed was exposed to simulated solar light from Xe lamps with an input power of 2.4-2.6 kWth for the T-R step and 1.6-1.7 kWth for the subsequent W-D step. The feed gas was switched from an inert gas (N2) in the T-R step to a gas mixture of N2 and steam in the W-D step. NiFe2O4/m-ZrO2 and unsupported NiFe2O4 particles were tested as a fluidized bed of reacting particles, and the production rate and productivity of hydrogen and the reactivity of reacting particles were examined. 相似文献