首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
Estrogens affect longitudinal bone growth through their action on endochondral bone formation. Two estrogen receptors are known, the classical estrogen receptor-alpha (ER alpha), newly demonstrated in human growth plate cartilage, and a recently cloned estrogen receptor-beta (ER beta). The present study aimed to localize a possible expression of ER beta protein in human growth plates. Tissue samples were obtained from tibial and femoral growth plates in four female pubertal patients undergoing epiphyseal surgery. Immunohistochemistry, using two different ER beta-specific antibodies, demonstrated positive staining for ER beta in hypertrophic epiphyseal chondrocytes from all patients. No staining was noted in resting or proliferative chondrocytes. These data suggest that in addition to ER alpha, human epiphyseal chondrocytes also express ER beta. The physiological role of ER beta in the regulation of longitudinal bone growth in humans remains to be elucidated.  相似文献   

2.
3.
Expression of parathyroid hormone-related protein (PTHrP) messenger RNA (mRNA) and protein was investigated throughout the developmental progression of endochondral bone formation in mouse and intramembranous bone formation in an in vivo model in rabbit, using in situ hybridization and immunohistochemistry. Endochondral bone formation was investigated in a developing embryo, newborn, and adult mouse. In fetal long bones through to newborn (day 7), PTHrP mRNA and protein were consistently expressed in chondrocytes within the proliferative, transitional, and hypertrophic zones. In addition, high levels of PTHrP were also detected in osteoblasts on the surface of trabecular bone surfaces. Similarly, at the adult stage (week 7), PTHrP mRNA and protein were consistently expressed in chondrocytes at epiphyseal ends of the subarticular cartilage, within cortical periosteum, as well as in osteoblasts located at the metaphyseal trabecular bone surfaces. Using an in vivo intramembranous bone formation model in rabbits, expression of PTHrP mRNA and protein was demonstrated in preosteoblasts prior to trabecular bone formation (1-week bone harvest). As bone formed (2-, 3-, and 4-week bone tissue harvests), PTHrP mRNA and protein were highly expressed in actively synthesizing osteoblasts and in those osteocytes embedded within the superficial layers of the bone matrix. Lining osteoblasts and osteocytes buried deeply in the bone matrix displayed weak or no signal for PTHrP. The pattern of spatial and temporal expression of PTHrP demonstrated in cartilage cells and osteoblasts in the two systems suggests an important role of PTHrP in both endochondral and intramembranous bone formation.  相似文献   

4.
5.
OBJECTIVE: Parathyroid hormone (PTH) induced bone resorption by osteoclasts depends on the presence of osteoblasts. PTH induced production of prostaglandins by osteoblasts and induction of bone resorption by prostaglandins suggest that these autacoids may be implicated in the effects of PTH on bone. Our objective was to determine if the increase in prostaglandin production induced in human osteoblasts by PTH is due to an increase in cyclooxygenase-2 (COX-2) expression. METHODS: Primary cultures of human osteoblasts were obtained from specimens of trabecular bone. Confluent cells were treated with PTH, dexamethasone or compound NS-398, a specific COX-2 inhibitor. The concentration of prostaglandin E2 (PGE2) in the supernatants was determined by radioimmunoassay and COX-2 mRNA levels evaluated by Northern blot. RESULTS: PTH induced COX-2 mRNA expression and PGE2 production. These effects were time and concentration dependent and were inhibited by dexamethasone. Compound NS-398 reduced PGE2 production to the same extent as dexamethasone, and neither compound had an additive effect on this variable. CONCLUSION: These results show that PTH induces COX-2 expression in human osteoblasts in culture and suggest that this isoenzyme is the main factor in the control of prostaglandin synthesis in these experimental conditions.  相似文献   

6.
Neonatal exposure to estrogens permanently alters rat prostate growth and epithelial differentiation leading to prostatic dysplasia on aging. The effects are lobe-specific, with the greatest response observed in the ventral lobe. Recently, a novel estrogen receptor (ER) complementary DNA was cloned from the rat prostate and termed ER-beta (ER beta) due to its high homology with the classical ER alpha. The protein possesses high affinity for 17beta-estradiol, indicating that ER beta is an alternate molecule for mediating estrogenic effects. Importantly, ER beta messenger RNA (mRNA) was localized to rat prostatic epithelial cells, which contrasts with the stromal localization of ER alpha in the rat prostate. The present study was undertaken to determine the ontogeny of ER beta mRNA expression in the rat prostate lobes and to examine the effects of early estrogen exposure on prostatic ER beta expression. Male rat pups were given 25 microg estradiol or oil on days 1, 3, and 5; were killed on day 1, 3 (oils only), 6, 10, 30, or 90; and prostate lobes were frozen. Longitudinal sections were processed for in situ hybridization using an 35S-labeled antisense mRNA probe corresponding to a 400-bp EcoRI-AccI fragment in the 5' untranslated region of rat ER beta complementary DNA. Image analysis was used to quantitate silver grains. In addition, total RNA was isolated from the ventral prostate (VP) and used for semiquantitative RT-PCR. Results from in situ hybridization revealed that at birth, ER beta was equivalently expressed at low levels in both mesenchymal and epithelial cells in oil-treated rats. From day 1 onwards, expression in all stromal cells slowly and significantly declined, so that in the control adult prostate, stromal ER beta mRNA was slightly above background. In the oil-treated control rats, epithelial ER beta mRNA increased to moderate levels between days 6-10 in the VP and days 10-15 in the dorsal and lateral lobes as cells began differentiation and ducts lumenized. A further significant increase in ER beta message was observed at day 30, which indicates that full epithelial ER beta expression may require the completion of functional differentiation. By day 90, expression levels were maximal and similar between the lobes. RT-PCR substantiated this developmental increase in ER beta between days 1-90. Neonatal exposure to estrogens did not have an immediate effect on prostatic ER beta mRNA levels as determined by in situ hybridization and RT-PCR. However, the marked increase in epithelial cell expression at day 30 observed in the control VP was dampened in the VP of animals exposed neonatally to estrogens. By day 90, the VP of estrogenized rats possessed low ER beta message levels compared with the high expression in oil controls. In contrast, the dorsal and lateral lobes of neonatally estrogenized rats possessed high levels of ER beta mRNA at day 90, equivalent to controls. The present data demonstrate that ER beta mRNA expression in the rat prostate is developmentally regulated, and that neonatal estrogen can affect this expression in the adult VP. Because the effect of neonatal estrogens was not immediate, the data imply that early estrogen exposure may not directly autoregulate ER beta expression, and suggests that the adult effects on ER beta mRNA expression may be indirect. The differences in ER beta mRNA imprinting in the separate lobes may account for or reflect the lobe-specific neonatal estrogen imprints previously observed in the rat prostate.  相似文献   

7.
This study examined the effect of recombinant human bone morphogenetic protein-2 on several parameters of growth, differentiation, and matrix synthesis and on the endogenous production of mRNA of bone morphogenetic proteins 2 and 4 by growth plate chondrocytes in culture. Chondrocytes from resting and growth zones were obtained from rat costochondral cartilage and cultured for 24 or 48 hours in medium containing 0.05-100 ng/ml recombinant human bone morphogenetic protein-2 and 10% fetal bovine serum. Incorporation of [3H]thymidine, cell number, alkaline phosphatase specific activity, incorporation of [3H]proline into collagenase-digestible protein and noncollagenase-digestible protein, and incorporation of [35S]sulfate were assayed as indicators of cell proliferation, differentiation, and extracellular matrix synthesis. mRNA levels for bone morphogenetic proteins 2 and 4 were determined by Northern blot analysis. Recombinant human bone morphogenetic protein-2 increased the incorporation of [3H]thymidine by quiescent resting-zone and growth-zone cells in a similar manner, whereas it had a differential effect on nonquiescent cultures. At 24 and 48 hours, 12.5-100 ng/ml recombinant human bone morphogenetic protein-2 caused a dose-dependent increase in cell number and DNA synthesis in resting-zone chondrocytes. No effect was seen in growth-zone cells. Recombinant human bone morphogenetic protein-2 stimulated alkaline phosphatase specific activity in resting-zone chondrocytes in a bimodal manner, causing significant increases between 0.2 and 0.8 ng/ml and again between 25 and 100 ng/ml. In contrast, alkaline phosphatase specific activity in growth-zone chondrocytes was significantly increased only between 12.5 and 100 ng/ml. Recombinant human bone morphogenetic protein-2 increased the production of both collagenase-digestible protein and noncollagenase-digestible protein by resting-zone and growth-zone cells, but incorporation of [35S]sulfate was unaffected. Administration of recombinant human bone morphogenetic protein-2 also increased incorporation of [3H]uridine in both resting-zone and growth-zone chondrocytes; these cells produced mRNA for bone morphogenetic proteins 2 and 4. Bone morphogenetic protein-2 mRNA levels in both resting-zone and growth-zone chondrocytes increased in the presence of recombinant human bone morphogenetic protein-2; however, bone morphogenetic protein-4 mRNA levels in growth-zone cells decreased under its influence, and those in resting-zone cells were upregulated only with a dose of 10 ng/ml. This indicates that recombinant human bone morphogenetic protein-2 regulates chondrocyte proliferation, differentiation, and matrix production, and the effects are dependent on the stage of cell maturation. Resting-zone chondrocytes were more sensitive, suggesting that they are targeted by bone morphogenetic protein-2 and that this growth factor may have autocrine effects on these cells.  相似文献   

8.
Retinoic acid inhibits proliferation and steroid receptor gene expression in human breast cancer cell lines. Retinoic acid receptors (RAR)alpha, -beta, and -gamma are expressed in these cells and the expression of RAR alpha is significantly greater in estrogen receptor (ER)-positive cells. This study was undertaken to determine whether the same relationship between RAR alpha and ER gene expression was present in human breast cancers and to explore the possibility that the higher level of RAR alpha in ER-positive cells was due to estrogen regulation of RAR alpha gene expression. RAR alpha and ER mRNA expression were determined by Northern blot analysis in 116 primary breast tumors; 94 (81%) tumors were ER-positive and of these 87 (93%) were also RAR alpha-positive. The coexpression of ER and RAR alpha was statistically significant (P = 0.0052 by chi 2 contingency analysis). There was also a positive correlation (by linear regression analysis) between the levels of expression of ER and RAR alpha mRNA (r2 = 0.251, P = 0.0001), which confirmed the relationship previously documented in breast cancer cell lines and suggested that RAR alpha expression may be modulated in breast cancer in vivo by estrogens acting via the ER. The ability of estradiol to regulate RAR alpha gene expression was examined in vitro using T-47D cells which had been rendered sensitive to estrogen by repeated passage in steroid-depleted medium. Estradiol increased RAR alpha gene expression, but not that of RAR beta or RAR gamma, in a concentration-dependent manner, with the effect being maximal at 10(-10) M and less marked at higher concentrations. The effect was rapid, being detectable 1 h after and maximal 6 h after treatment with 10(-10) M estradiol. Co-treatment of cells with estradiol and antiestrogens (tamoxifen or ICI 164384, 4 x 10(-7) M for 6 h) inhibited the estradiol induction of RAR alpha gene expression, demonstrating that the effect was ER mediated. The estradiol sensitivity of the effect was underscored by the demonstration that addition of untreated serum to cells growing under steroid-depleted conditions was sufficient to induce maximal RAR alpha gene expression. This effect was totally abolished by addition of ICI 164384. In summary, the demonstration that estradiol increased RAR alpha mRNA levels in breast cancer cells supports the hypothesis that the correlation between RAR alpha and ER gene expression in breast tumors and breast cancer cell lines is due to estradiol augmentation of RAR alpha gene expression.  相似文献   

9.
OBJECTIVE: To investigate the roles of SPARC (secreted protein, acidic and rich in cysteine) (osteonectin) in arthritis, using cartilage and synovium specimens and synovial fluids (SF) from patients with rheumatoid arthritis (RA) or osteoarthritis (OA), and to examine the effects of cytokines, growth factors, and hormones on SPARC synthesis by chondrocytes in culture. METHODS: SPARC in cartilage and synovium was immunostained with monoclonal antibodies. SPARC synthesis by cultured chondrocytes was measured by Northern blot analysis, immunoblotting, and sandwich enzyme-linked immunosorbent assay. RESULTS: SPARC was identified in numerous chondrocytes in the superficial and middle zones and in regenerating chondrocytes of RA and OA joints, whereas such staining was absent in these zones of normal cartilage, except for weak signals from a few chondrocytes in the deep zone. In addition, SPARC synthesis was enhanced in synovial cells of RA and OA joints. The average SPARC level in SF was 10-fold higher in the RA than in the OA population. In rabbit articular chondrocyte cultures, administration of transforming growth factor beta 1 (TGF beta 1) and bone morphogenetic protein 2 increased SPARC levels at 24-48 hours, whereas interleukin-lbeta (IL-1 beta), IL-1 alpha, tumor necrosis factor alpha, lipopolysaccharide, phorbol myristate acetate, basic fibroblast growth factor, and dexamethasone decreased SPARC levels at 24-72 hours. TGF beta increased SPARC messenger RNA (mRNA) levels at 24 hours, whereas IL-1 beta caused a marked decrease in SPARC mRNA levels at 24 hours. Furthermore, IL-1 decreased the glycosylation of SPARC. CONCLUSION: These findings suggest that various growth factors and cytokines, including TGF beta 1 and IL-1 beta, regulate the production of SPARC by chondrocytes at pre- and posttranslational levels, and that SPARC synthesis is markedly enhanced in arthritic joints.  相似文献   

10.
The rat homeobox gene, rHox, was cloned from a rat osteosarcoma cDNA library. Southwestern and gel mobility shift analyses showed that rHox binds to the promoter regions of collagen (alpha1)I and osteocalcin genes while transient transfection with rHox resulted in repression of their respective promoter activities. In situ hybridization studies showed that rHox mRNA was widely expressed in osteoblasts, chondrocytes, skeletal muscle, skin epidermis, and bronchial and intestinal epithelial cells, as well as cardiac muscle in embryonic and newborn mice. However in 3-month-old mice, rHox mRNA expression was restricted to osteoblasts, megakaryocytes, and myocardium. Bone morphogenetic protein 2, a growth factor that commits mesenchymal progenitor cells to differentiate into osteoblasts, down-regulated rHox mRNA expression by 40-50% in UMR 201, a rat preosteoblast cell line, in a time- and dose-dependent manner. In contrast, PTH-related protein (PTHrP), recently shown to be a negative regulator of chondrocyte differentiation, significantly enhanced rHox mRNA expression in UMR 106-06 osteoblastic cells by 3-fold at 24 h while at the same time down-regulating expression of pro-alpha1(I) collagen mRNA by 60%. Expression of rHox mRNA in calvarial osteoblasts derived from PTHrP -/- mice was approximately 15% of that observed in similar cells obtained from normal mice. In conclusion, current evidence suggests that rHox acts as a negative regulator of osteoblast differentiation. Furthermore, down-regulation of rHox mRNA by bone morphogenetic protein 2 and its up-regulation by PTHrP support a role of the homeodomain protein, rHox, in osteoblast differentiation.  相似文献   

11.
12.
To study thyroid hormone and estrogen interactions in the central nervous system (CNS), the expression of estrogen sensitive genes was examined within the limbic-hypothalamic circuit. Estrogen up-regulates the expression of reproductively relevant neuropeptide messenger RNAs (mRNAs) encoding cholecystokinin (CCK) and enkephalin, peptides that stimulate lordosis. Estrogen down-regulates the expression of the estrogen receptor alpha (ER alpha) mRNA in the nuclei of the circuit. We examined the possibility that thyroid hormone treatment would block the estrogen modulation of these messages. Estradiol benzoate (EB), EB + thyroxine (T4), T4, or oil were administered to ovariectomized, adult female rats for 10 days. Isotopic in situ hybridization histochemistry revealed that within the limbic-hypothalamic nuclei, levels of CCK and preproenkephalin (PPE) mRNA levels were significantly higher in EB and EB + T4-treated animals compared with T4 or oil-treated animals. ER alpha mRNA levels were low in EB treated animals, elevated in T4 or oil-treated animals and further elevated in EB + T4-treated animals. In summary, T4 treatment had neither an independent nor an antagonistic effect on estrogen induced expression of CCK or PPE mRNA in the circuit. However, T4 did prevent the normal estrogenic decrease of ER alpha mRNA levels in the nuclei of the limbic-hypothalamic circuit.  相似文献   

13.
The three-dimensional (3D) morphology of trabecular bone is frequently quantified using computer programs. However, there are no standardized implementations of morphology programs and many variations are possible. Even though programs may use the same basic method, results can be significantly different because of differences in implementation. Morphology data from different laboratories therefore may not be comparable. The method of directed secants, with parallel plate assumptions, is commonly used to quantify 3D morphology. We examined the effect of several variations in the implementation of this method on measurements of trabecular plate number (Tb.N), trabecular thickness, and trabecular spacing. Three-dimensional micromagnetic resonance images of 10 bovine trabecular bone specimens were analyzed using several variations of the directed secant method. An analysis of covariance with repeated measures suggested that variations in the algorithm used to count test line intersections, variations in the criteria used to classify a test coordinate as bone or marrow, and variations in the number of test grid rotations had significant effects on Tb.N (p < 0.0001). The largest difference in Tb.N (52%) was due to the method used to count test line intersections with the bone-marrow interface. Variations in the classification algorithm and variations in the number of test line grid rotations resulted in a 6% difference in Tb.N. The spacing of the test line grids did not affect Tb.N (p = 0.28), and all differences were independent of volume fraction (p = 0.67). These data show that there can be significant differences in trabecular bone morphology measurements due only to the method used for the measurements. To facilitate comparisons between laboratories, we have made validated computer programs to measure trabecular bone morphology available over the Internet.  相似文献   

14.
15.
Immunohistochemical localization of two estrogen receptor (ER) subtypes, ER beta and ER alpha, was performed in neonatal, early postnatal, immature, and adult rats to determine whether ER alpha and ER beta are differentially expressed in the ovary. ER beta and ER alpha were visualized using a polyclonal anti-ER beta antibody and a monoclonal ER alpha (ID5) antibody, respectively. Postfixed frozen sections and antigen-retrieved paraffin sections of the ovary revealed nuclear ER beta immunoreactivity (IR) in granulosa cells, which was prevented when peptide-adsorbed antibody was used instead. In immature and adult rat ovaries, ER beta was expressed exclusively in nuclei of granulosa cells of primary, secondary, and mature follicles. Atretic follicle granulosa cells showed only weak or no staining. No specific nuclear ER beta IR was detected in thecal cells, luteal cells, interstitial cells, germinal epithelium, or oocytes. In neonatal rat ovary, no ER beta expression was found. In ovaries of 5- and 10-day-old rats, weak ER beta IR was observed in granulosa cells of primary and secondary follicles, but no staining was detected in the primordial follicles. ER alpha protein exhibited a differential distribution in the ovary with no detectable expression in the granulosa cells but evidence of ER alpha IR in germinal epithelium, interstitial cells, and thecal cells. In the oviduct and uterus, IR for ER alpha, but not ER beta, was found in luminal epithelium, stromal cells, muscle cells, and gland cells. Our present study demonstrates that ER beta and ER alpha proteins are expressed in distinctly different cell types in the ovary. The exclusive presence of ER beta in granulosa cells implies that this specific new subtype of ER beta mediates some effects of estrogen action in the regulation of growth and maturation of ovarian follicles.  相似文献   

16.
17.
The proliferative capacity and cellular and biochemical characteristics of human trabecular bone osteoblasts were analysed throughout their replicative lifespan in vitro. Like several other cell types, human osteoblasts demonstrated a typical Hayflick phenomenon of cellular aging comprising a period of rapid proliferation until cumulative population doubling level (CPDL) 22 to 24, followed by a phase of slow growth and the final cessation of cell division at CPDL 32 to 34. Comparing young cells (less than 20% lifespan completed) and old cells (more than 90% lifespan completed) revealed a progressive increase in population doubling (PD) time, a decrease in attachment frequency, a decrease in the number of S-phase positive cells, a decrease in the rates of DNA, RNA and protein synthesis, an increase in the protein content per cell and an increased proportion of senescence-specific beta-galactosidase positive cells. While osteoblastic production of collagen type I decreased progressively during aging, alkaline phosphatase activity dropped rapidly after the first few passages and then remained constant during the rest of the proliferative lifespan, Significant morphological changes from thin and spindle-shaped early passage young cells to large, flattened and irregularly shaped late passage old cells full of intracellular debris were observed. In comparison, osteoblasts established from an osteoporotic bone sample showed a maximum CPDL of less than 5, had a longer PD time and exhibited abnormal senescent morphology. Thus, we have demonstrated for the first time that human osteoblasts, like several other diploid cell types, have a limited proliferative capacity in vitro and undergo aging and senescence as measured by various cellular and biochemical markers. In addition, preliminary studies show that cells from osteoporotic bone have a severely reduced proliferative capacity. This model of bone cell aging facilitates study of the molecular mechanisms of osteoblast senescence as well as factors related to osteoblast dysfunction in patients with osteoporosis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号