共查询到18条相似文献,搜索用时 46 毫秒
1.
在等离子弧焊接中采用无电源探针法可以检测等离子云,判断焊接小孔是否形成。根据等离子体鞘层理论,伸入等离子云中的探针表面将产生一负电位,称其为鞘层电压。采用探针检测等离子弧焊接中的等离子云,其检测信号与鞘层电压密切相关。由于鞘层电压大小与探针检测处等离子体温度和成分有关,因此,在检测过程中,探针位置、焊接速度和焊接电流等影响等离子云温度的因素是影响检测电压大小的主要原因。试验证明,同样的焊接条件,探针位置不同,检测信号差别很大,甚至可能检测不到等离子云的信号。不同的焊接工艺参数,对应有不同的最佳探针位置,在最佳探针检测位置可以获得最大的检测电压值。 相似文献
2.
穿孔等离子弧焊接热场和流场的数值模拟 总被引:1,自引:3,他引:1
考虑熔池和小孔的耦合作用,建立了穿孔等离子弧焊接热过程的三维瞬态模型.采用焓孔隙度法处理了凝固熔化过程中相变潜热以及动量损耗问题.基于流体体积函数法(VOF)对小孔界面实施追踪.对等离子弧焊从小孔形成到穿孔的瞬态演变行为、熔池流场的动态变化过程进行了数值模拟.开展了穿孔等离子弧焊接试验,对数值模拟结果进行了试验验证.结... 相似文献
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
During stable keyhole plasma arc welding, the pilot arc and the transferred arc exist at the meantime, and the arcs can be considered as a composition of two parts inside and outside the nozzle, respectively. Under the mechanical constriction and thermal contraction effects, the inside arc has certain arc length, electron density and arc profile etc. inducing constant tungsten-to-nozzle voltage. However, the arc outside the nozzle diverges at about 5 degrees and has certain characteristics similar to the free arcs. The nozzle-to-workpiece voltage (NTWV) depends mainly on the length of the arc, which gets bigger as increasing of the weld penetration and keyhole size. The NTWV sensor is developed for monitoring NTWV in real time. The welding experiments are designed to get different penetrations and keyhole sizes. It is found that as the weld penetration and the keyhole size increase, NTWV also increases linearly. The NTWV signals can be used as the feedback variable in automatic control of keyhole plasma arc welding. 相似文献
13.
According to the strategy of controlled pulse key-holing, a new sensing and control system was developed for monitoring and controlling the keyhole condition during plasma arc welding (PAW). Through sensing and processing the efflux plasma voltage signals, the quantitative relationship among the welding current, efflux plasma voltage and backside weld width of the weld was established. PAW experiments show that the efflux plasma voltage can reflect the state of keyhole and backside weld width accurately. The closed-loop control tests validate the stability and reliability of the developed keyhole PAW system. 相似文献
14.
根据流体的质量、动量、能量守恒方程,建立了穿孔等离子弧焊接过程中的等离子电弧三维数学模型,用磁矢量法求解磁场问题.模型包括了一部分喷嘴和钨阴极,小孔也被包含进模型中.利用ANSYS有限元分析软件求解模型,得到等离子电弧的温度分布,以研究等离子弧焊中电弧反翘现象.结果表明,等离子电弧反翘随小孔尺寸的增大而减弱,电弧尾焰随小孔尺寸的增大而增强;而适当的增加焊接速度以使小孔轴线与电弧轴线之间形成一定的偏差是形成等离子电弧反翘现象的必要条件;焊接电流主要是通过改变小孔尺寸而对电弧反翘产生影响. 相似文献
15.
16.
17.
The key problem for numerical simulation of plasma arc welding (PAW) process is to develop a suitable and adaptive volumetric heat source mode which reflects the physical characteristics of keyhole PAW. To this end, the keyhole geometry under different PAW process conditions must be predicted. In this paper, a mathematical model for determining the keyhole shape is developed with considering the mass and momentum conservation of the in-keyhole plasma jet as well as the pressure equilibrium at the plasma jet/liquid metal boundary. A suitable heat source model related to the keyhole shape is applied to the calculation of PAW weld dimensions. The predicted results are in good agreement with the experimental ones. 相似文献
18.
Yukinori Hirota 《Welding International》2013,27(6):441-443
Plasma arc welding can realize high-speed welding, deeper weld penetration and, furthermore, smaller thermal distortion. For these reasons, plasma arc welding is employed for keyhole welding. However, it has been pointed out that it is difficult to obtain the stability of the welding. In this study, we have developed a unified plasma arc welding model for analysing the welding mechanism and influence of the torch design and operation conditions of the arc on the welding process. In this paper, the keyhole welding of a thick aluminium plate employing the plasma arc was numerically analyzed for clarifying the mechanism determining the keyhole size which is important for improving the stability of the process. As a result, it was found that the keyhole size is determined mainly by a force balance between the surface tension of a weld pool and metal vapour pressure. 相似文献