首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A soft switching boost converter with zero-voltage transition (ZVT) main switch using zero-voltage switching (ZVS) auxiliary switches is proposed. Various operating intervals of the converter are presented and analyzed. Design considerations are discussed. A design example with experimental results obtained from a 300-W, 250-kHz, 300-V output DC-DC converter is presented. A modified gating scheme to utilize the auxiliary switch in the main power processing is discussed. A 600-W, 100-kHz, 380 V output, 90-250 V AC, power factor corrected, AC-to-DC, boost converter with the modified gating scheme is presented. Results show that the main switch maintains ZVT while auxiliary switches retain ZVS for the complete specified line and load conditions. Parasitic oscillations existing in the converters proposed in the literature are completely removed.  相似文献   

2.
This paper proposes a new single-phase high-power-factor rectifier, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-current switching PWM (ZCS-PWM) auxiliary circuit is configured in the presented ZCS-PWM rectifier to perform ZCS in the active switches and zero-voltage switching (ZVS) in the passive switches. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZCS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved because of the following reasons: 1) the circulating current for the soft switching flows only through the auxiliary circuit; 2) a minimum number of switching devices are involved in the circulating current path; and 3) the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Seven transition states for describing the behavior of the ZCS-PWM rectifier in one switching period are described. The PWM-switch model is used to predict the system performance. A prototype rated at 1 kW, operating at 60 kHz, with an input alternating current voltage of 220 V/sub rms/ and an output voltage of 400 V/sub dc/, has been implemented in laboratory. An efficiency of 98.3% and a power factor over 0.99 have been measured. Analysis, design, and the control circuitry are also presented in this paper.  相似文献   

3.
An improved ZCS-PWM commutation cell for IGBT's application   总被引:3,自引:0,他引:3  
An improved zero-current-switching pulsewidth-modulation (ZCS-PWM) commutation cell is proposed, which is suitable for high-power applications using insulated gate bipolar transistors (IGBTs) as the power switches. It provides ZCS operation for active switches with low-current stress without voltage stress and PWM operating at constant frequency. The main advantage of this cell is a substantial reduction of the resonant current peak through the main switch during the commutation process. Therefore, the RMS current through it is very close to that observed in the hard-switching PWM converters. Also, small ratings auxiliary components can be used. To demonstrate the feasibility of the proposed ZCS-PWM commutation cell, it was applied to a boost converter. Operating principles, theoretical analysis, design guidelines and a design example are described and verified by experimental results obtained from a prototype operating at 40 kHz, with an input voltage rated at 155 V and 1 kW output power. The measured efficiency of the improved ZCS-PWM boost converter is presented and compared with that of hard-switching boost converter and with some ZCS-PWM boost converters presented in the literature. Finally, this paper presents the application of the proposed soft-switching technique in DC-DC nonisolated power converters  相似文献   

4.
The purpose of this paper is to introduce a new family of zero-voltage switching (ZVS) pulse-width modulation (PWM) active-clamping DC-to-DC boost power converters. This technique presents ZVS commutation without additional voltage stress and a significant increase in the circulating reactive energy throughout the power converters. So, the efficiency and the power density become advantages when compared to the hard-switching boost power converter. Thus, these power converters may become very attractive in power factor correction applications. In this paper, the complete family of boost power converters is shown, and one particular circuit, taken as an example, is analyzed, simulated and experimented. Experimental results are presented, taken from a laboratory prototype rated at 1600 W, input voltage of 300 V, output voltage of 400 V, and operating at 100 kHz. The measured efficiency at full load was 98%, and the power converter kept an efficiency up to 95% from 17% to 100% of full load, without additional voltage and current stresses  相似文献   

5.
High-frequency quasi-resonant converter technologies   总被引:4,自引:0,他引:4  
Resonant switch topologies operating under the principle of zero-current switching (ZCS) and zero-voltage switching (ZVS) are introduced to minimize switching losses, stresses, and noises. Using the resonant switch concept, a host of new quasi-resonant converters (QRCs) are derived from conventional PWM converters. They are capable of operating in the megahertz range, with a significant improvement in performance and power density. Performances of ZCS and ZVS QRCs are compared. Power stages, gate drives, and feedback controls are discussed  相似文献   

6.
A new family of zero-current-switching (ZCS) pulsewidth-modulated (PWM) converters which uses a new ZCS-PWM switch cell is presented in this paper. The main switch and auxiliary switch operate at ZCS turn-on and turn-off, and all the passive semiconductor devices in the ZCS-PWM converter operate at zero-voltage-switching (ZVS) turn-on and turn-off. Besides operating at constant frequency and with reduced commutation losses, these new converters have no additional current stress in comparison to the hard-switching converter counterpart. The new family of ZCS-PWM converters is suitable for high-power applications using insulated gate bipolar transistors (IGBTs). The PWM switch model and state-space averaging approach is used to estimate and examine the steady-state and dynamic character of the system. The principle of operation, theoretical analysis, and experimental results of the new ZCS-PWM boost converter, rated 1 kW and operating at 30 kHz, are provided in this paper to verify the performance of this new family of converters.  相似文献   

7.
A novel zero-current-zero-voltage transition (ZCZVT) forward converter with synchronous rectification (SR) is presented in this paper. The proposed converter is operating at 300kHz and processes the features of both zero-voltage transition (ZVT) at turn on and zero-current transition (ZCT) at turn off for the main switch. The auxiliary switch also achieves zero-current switching (ZCS). The flux of transformer can be reset without tertiary winding. The steady-state analysis and design considerations are investigated in detail in this work. Moreover, a self-driven synchronous rectification is also added to the ZCZVT forward converter to reduce the conduction losses of the output rectifier. For 48-V input and 12-V 100-W output, a prototype of the proposed converter for 300-kHz switching is built to verify the theoretical analysis. Finally, the power losses are well estimated. The overall efficiency of the proposed converter is achieved at 89% at full load.  相似文献   

8.
Asymmetric control scheme is an approach to achieve zero-voltage switching (ZVS) for half-bridge isolated dc-dc converters. However, it is not suited for wide range of input voltage due to the uneven voltage and current components stresses. This paper presents a novel "duty-cycle-shifted pulse-width modulated" (DCS PWM) control scheme for half-bridge isolated dc-dc converters to achieve ZVS operation for one of the two switches without causing the asymmetric penalties in the asymmetric control and without adding additional components. Based on the DCS PWM control scheme, an active-clamp branch comprising an auxiliary switch and a diode is added across the isolation transformer primary winding in the half-bridge converter to achieve ZVS for the other main switch by utilizing energy stored in the transformer leakage inductance. Moreover, the auxiliary switch also operates at ZVS and zero-current switching (ZCS) conditions. Furthermore, during the off-time period, the ringing resulted from the oscillation between the transformer leakage inductance and the junction capacitance of two switches is eliminated owing to the active-clamp branch and DCS PWM control scheme. Hence, switching losses and leakage-inductance-related losses are significantly reduced, which provides the converter with the potential to operate at higher efficiencies and higher switching frequencies. The principle of operation and key features of the proposed DCS PWM control scheme and two ZVS half-bridge topologies are illustrated and experimentally verified.  相似文献   

9.
This paper proposes a new zero-current-switching (ZCS) pulsewidth modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero-current condition. The diodes commutate softly and the reverse-recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of DC-to-DC PWM converters is derived. The new family of ZCS PWM converters is suitable for the high-power applications employing insulated gate bipolar transistors. Among the new family of DC-to-DC PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5 kW prototype boost converter operating at 40 kHz  相似文献   

10.
This paper proposes a new single-phase high-power-factor rectifier, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-voltage-switching PWM (ZVS-PWM) auxiliary circuit is configured in the presented ZVS-PWM rectifier to perform ZVS in the main switches and the passive switches, and zero-current switching in the auxiliary switch. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZVS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved, since the circulating current for the soft switching flows only through the auxiliary circuit and a minimum number of switching devices are involved in the circulating current path, and the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Nine transition states for describing the behavior of the ZVS-PWM rectifier in one switching period are described. A prototype rated at 1 kW, operating 80 kHz, with an input ac voltage of 220 V/sub rms/ and an output voltage of 400 V/sub dc/ has been implemented in the laboratory. An efficiency of 96.7% and power factor over 0.99 has been measured. Analysis, design, and the control circuitry are also presented in this paper.  相似文献   

11.
提出一种新型的零电压零电流转换(ZCZVT)的正激拓扑。拓扑工作频率为300kHz,能实现主开关管的零电压开通(ZVS)和零电流关断(ZCS),同时辅助开关管也能实现零电流关断(ZCS),且变压器的磁通复位不需要辅助绕组。文章进行了拓扑的稳态分析,并且讨论了谐振电路的参数设计。最后,在研制一台48V输入、12V/100W输出样机的基础上,实验验证这种新型正激ZCZVT PWM DC-DC变换器的软开关特性。  相似文献   

12.
A new family of zero-current-switching (ZCS) pulsewidth-modulation (PWM) converters using a new ZCS-PWM auxiliary circuit is presented in this paper. The main switch and auxiliary switch operate at ZCS turn-on and turn-off, and the all-passive semiconductor devices in the ZCS-PWM converters operate at zero-voltage-switching (ZVS) turn-on and turn-off. Besides operating at constant frequency and reducing commutation losses, these new converters have no additional current stress and conduction loss in the main switch in comparison to the hard-switching converter counterpart. The PWM switch model and state-space averaging approach is used to estimate and examine the steady-state and dynamic character of the system. The new family of ZCS-PWM converters is suitable for high-power applications using insulated gate bipolar transistors (IGBTs). The principle of operation, theoretical analysis, and experimental results of the new ZCS-PWM boost converter, rated 1.6 kW and operating at 30 kHz, are provided in this paper to verify the performance of this new family of converters.  相似文献   

13.
A new family of zero-voltage-switching (ZVS) pulsewidth-modulated (PWM) converters that uses a new ZVS-PWM switch cell is presented in this paper. Except for the auxiliary switch, all active and passive semiconductor devices in the ZVS-PWM converters operate at ZVS turn ON and turn OFF. The auxiliary switch operates at zero-current-switching (ZCS) turns ON and OFF. Besides operating at constant frequency, these new converters have no overvoltage across the switches and no additional current stress on the main switch in comparison to the hard-switching converter counterpart. Auxiliary components rated at very small current are used. The principle of operation, theoretical analysis, and experimental results of the new ZVS-PWM boost converter, rated 1 kW, and operating at 80 kHz, are provided in this paper to verify the performance of this new family of converters.  相似文献   

14.
Novel ZVT-PWM converters with active snubbers   总被引:6,自引:0,他引:6  
An active snubber cell is proposed to contrive zero-voltage-transition (ZVT) pulsewidth-modulated (ZVT-PWM) converters. Except for the auxiliary switch, all active and passive semiconductor devices in a ZVT-PWM converter operate at zero-voltage-switching (ZVS) turn on and turn off. The auxiliary switch operates at ZVS turn off and near zero current-switching (ZCS) turn on. An analytical study on a boost ZVT-PWM converter with the proposed active snubber cell is presented in detail. A 750 W 80 kHz prototype of the boost ZVT-PWM converter has been built in the laboratory to experimentally verify the analysis. Six basic ZVT-PWM converters can be easily created by attaching the proposed active snubber cells to conventional PWM converters. A detailed design procedure of the proposed active snubber cell is also presented in this paper  相似文献   

15.
A new ZVT-PWM DC-DC converter   总被引:7,自引:0,他引:7  
In this paper, a new active snubber cell that overcomes most of the drawbacks of the normal "zero voltage transition-pulse width modulation" (ZVT-PWM) converter is proposed to contrive a new family of ZVT-PWM converters. A converter with the proposed snubber cell can also operate at light load conditions. All of the semiconductor devices in this converter are turned on and off under exact or near zero voltage switching (ZVS) and/or zero current switching (ZCS). No additional voltage and current stresses on the main switch and main diode occur. Also, the auxiliary switch and auxiliary diodes are subjected to voltage and current values at allowable levels. Moreover, the converter has a simple structure, low cost, and ease of control. A ZVT-PWM boost converter equipped with the proposed snubber cell is analyzed in detail. The predicted operation principles and theoretical analysis of the presented converter are verified with a prototype of a 2 kW and 50 kHz PWM boost converter with insulated gate bipolar transistor (IGBT). In this study, a design procedure of the proposed active snubber cell is also presented. Additionally, at full output power in the proposed soft switching converter, the main switch loss is about 27% and the total circuit loss is about 36% of that in its counterpart hard switching converter, and so the overall efficiency, which is about 91% in the hard switching case, increases to about 97%  相似文献   

16.
This brief presents the analysis, design, and implementation of zero-voltage switching (ZVS) active clamp converter with series-connected transformer. A family of isolated ZVS active clamp converters is introduced. The technique of the adopted ZVS commutation will not increase additional voltage stress of switching devices. In the adopted converter with series-connected transformer, each transformer can be operated as an inductor or a transformer. Therefore, no output inductor is needed. To reduce the voltage stress of the switching device in the conventional forward converter, the active clamp technique is used to recycle the energy stored in the transformer leakage back into the input dc source. Finally, experimental results are presented taken from a laboratory prototype with 100-W rated power, input voltage of 155 V, output voltage of 5 V, and operating at 150 kHz. [All rights reserved Elsevier].  相似文献   

17.
In this paper, a novel family of pulsewidth-modulation soft-single-switched dc–dc converters without high voltage and current stresses is described. These converters do not require any extra switch to achieve soft switching, which considerably simplifies the control circuit. In all converter family members, the switch is turned on under zero-current condition and is turned off at almost zero-voltage condition. From the proposed converter family, the boost topology is analyzed, and its operating modes are explained. The presented experimental results of a prototype boost converter confirm the theoretical analysis.   相似文献   

18.
A zero-voltage-switched (ZVS) pulsewidth-modulated (PWM) boost converter with an energy feedforward auxiliary circuit is proposed in this paper. The auxiliary circuit, which is a resonant circuit consisting of a switch and passive components, ensures that the converter's main switch and boost diode operate with soft switching. This converter can function with PWM control because the auxiliary resonant circuit operates for a small fraction of the switching cycle. Since the auxiliary circuit is a resonant circuit, the auxiliary switch itself has both a soft turn on and turn off, resulting in reduced switching losses and electromagnetic interference (EMI). This is unlike other proposed ZVS boost converters with auxiliary circuits where the auxiliary switch has a hard turn off. Peak switch stresses are only slightly higher than those found in a conventional PWM boost converter because part of the energy that would otherwise circulate in the auxiliary circuit and drastically increase peak switch stresses is fed to the load. In this paper, the operation of the converter is explained and analyzed, design guidelines are given, and experimental results obtained from a prototype are presented. The proposed converter is found to be about 2%-3% more efficient than the conventional PWM boost converter  相似文献   

19.
This paper presents a high-performance DC-DC switching mode power supply designed to deliver a regulated 0-50 V/0-10 A output. The proposed power supply is based on a modified version of the zero-voltage switching (ZVS) full-bridge (FB) phase-shift DC-DC converter, which incorporates commutation auxiliary inductors to provide ZVS for the entire load range as well as a commutation aid circuit to clamp the output diode voltage. The control strategy is based on two control loops operating in cascade mode. The inner loop maintains a regulated output current, whereas the external voltage loop regulates the output voltage, independently of load and input-voltage changes. In order to obtain a high-reliability converter, the control circuit has been implemented using just two integrated circuits (ICs). The phase-shift regulator UC3875 IC generates the gate drive signal to the MOSFET's. The control loop regulators are implemented using the TL074 IC. A theoretical analysis was conducted, and experimental results were obtained for a 0-50 V/0-10 A power supply operating at 100 kHz  相似文献   

20.
A new ZVT-ZCT-PWM DC-DC converter   总被引:4,自引:0,他引:4  
In this paper, a new active snubber cell is proposed to contrive a new family of pulse width modulated (PWM) converters. This snubber cell provides zero voltage transition (ZVT) turn on and zero current transition (ZCT) turn off together for the main switch of a converter. Also, the snubber cell is implemented by using only one quasi resonant circuit without an important increase in the cost and complexity of the converter. New ZVT-ZCT-PWM converter equipped with the proposed snubber cell provides most the desirable features of both ZVT and ZCT converters presented previously, and overcomes most the drawbacks of these converters. Subsequently, the new converter can operate with soft switching successfully at very wide line and load ranges and at considerably high frequencies. Moreover, all semiconductor devices operate under soft switching, the main devices do not have any additional voltage and current stresses, and the stresses on the auxiliary devices are at low levels. Also, the new converter has a simple structure, low cost and ease of control. In this study, a detailed steady state analysis of the new converter is presented, and this theoretical analysis is verified exactly by a prototype of a 1-kW and 100-kHz boost converter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号