首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coevaporates of paracetamol and rifampicin with Eudragit polymers of different natures (anionic, cationic, and zwitterionic) were prepared. Determination of dissolution rate of these coevaporates in dissolution media simulating those of the gastrointestinal tract (GIT) revealed that the release rate of paracetamol is retarded from all the coevaporates studied. In this respect, Eudragit L100-SS shows the highest sustainment of drug release, while Eudragit E100 shows the lowest. Conversely, the release of rifampicin from its coevaporates with the anionic Eudragit S100 polymer is more retarded than the corresponding coevaporate with the zwitterionic Eudragit RL100 or from coevaporates with equal mixtures of the two polymers.

Increasing the polymer weight fraction in rifampicin coevaporates with Eudragit S100 up to 0.5 resulted in a corresponding decrease in the dissolution rate. However, beyond this weight fraction, the polymer effect on the dissolution rate of the drug becomes minimized. The results confirmed that the process of dissolution of the two drugs from their coevaporates is a diffusion-controlled release process.

The biological performance of paracetamol coevaporates was monitored in rabbits; paracetamol level in plasma was found to follow first-order kinetics. for all the investigated paracetamol coevaporates, the peak plasma level was less than 50 μg/ml compared to a value of 60, μg/ml for the drug per se. The coevaporates of the drug with Eudragit L100-55 showed slowest rates of absorption and elimination as well as greatest half-peak and half-life times. Biological peformance of rifampicin coevaporates was assessed in human subjects receiving a single oral dose equivalent to 300 mg of the drug. The results depicted sustainment of drug release as a function of polymer weight fraction. A strict correlation was shown to exist between the total amount of drug excreted during 24 hr post dosing of the coevaporates and its in vitro dissolution rate.

The results depicted that paracetamol can be formulated in the form of a coevaporate with Eudragit L100-55 to prepare a more safe sustained-release formulation with minimal side effects, and also revealed the advantages of administration of rifampicin in the form of a coevaporate with Eudragit S100 (4:1) at a single oral dose equivalent to 600 mg of drug.  相似文献   

2.
Abstract

Coevaporates of paracetamol and rifampicin with Eudragit polymers of different natures (anionic, cationic, and zwitterionic) were prepared. Determination of dissolution rate of these coevaporates in dissolution media simulating those of the gastrointestinal tract (GIT) revealed that the release rate of paracetamol is retarded from all the coevaporates studied. In this respect, Eudragit L100-SS shows the highest sustainment of drug release, while Eudragit E100 shows the lowest. Conversely, the release of rifampicin from its coevaporates with the anionic Eudragit S100 polymer is more retarded than the corresponding coevaporate with the zwitterionic Eudragit RL100 or from coevaporates with equal mixtures of the two polymers.

Increasing the polymer weight fraction in rifampicin coevaporates with Eudragit S100 up to 0.5 resulted in a corresponding decrease in the dissolution rate. However, beyond this weight fraction, the polymer effect on the dissolution rate of the drug becomes minimized. The results confirmed that the process of dissolution of the two drugs from their coevaporates is a diffusion-controlled release process.

The biological performance of paracetamol coevaporates was monitored in rabbits; paracetamol level in plasma was found to follow first-order kinetics. for all the investigated paracetamol coevaporates, the peak plasma level was less than 50 μg/ml compared to a value of 60, μg/ml for the drug per se. The coevaporates of the drug with Eudragit L100-55 showed slowest rates of absorption and elimination as well as greatest half-peak and half-life times. Biological peformance of rifampicin coevaporates was assessed in human subjects receiving a single oral dose equivalent to 300 mg of the drug. The results depicted sustainment of drug release as a function of polymer weight fraction. A strict correlation was shown to exist between the total amount of drug excreted during 24 hr post dosing of the coevaporates and its in vitro dissolution rate.

The results depicted that paracetamol can be formulated in the form of a coevaporate with Eudragit L100-55 to prepare a more safe sustained-release formulation with minimal side effects, and also revealed the advantages of administration of rifampicin in the form of a coevaporate with Eudragit S100 (4:1) at a single oral dose equivalent to 600 mg of drug.  相似文献   

3.
Background: Drug release from a solid form of self-emulsifying drug delivery system (SEDDS) has greatly been limited due to strong adsorption and physical interaction with carriers. To facilitate drug release process in the stomach, an acid-soluble powderizing carrier, Fujicalin® was evaluated together with different disintegrants and hydrophilic lubricants. Method: Immediate-release self-emulsifying tablets (IR-SETs) of ibuprofen (IBU) was prepared with solidified SEDDS of IBU, various disintegrants, and lubricants, and drug release was evaluated to develop IR-SET that can release IBU with a similar IBU release rate to that obtained with liquid SEDDS. Results: The liquid SEDDS consisted of Capryol 90, Cremophor EL, Labrasol, and IBU at a ratio of 3:4:3:3, and was solidified with various adsorbents. The powderized SEDDS was tabletted by a direct compression. Fujicalin®-based SEDDS tablets demonstrated remarkably higher dissolution rate of IBU compared with Neusilin® and Neosyl®-based SEDDS tablets. The IR-SET formula of IBU prepared with Fujicalin® as an adsorbent, Polyplasdone® as a disintegrant, and sodium bicarbonate as a co-disintegrant showed over 90% of initially loaded dose of IBU released within 5?min in a stimulated gastric juice (pH 1.2), exhibiting almost equivalent rate of IBU release to that shown by liquid SEDDS. The particle size analysis revealed no significant differences in droplet sizes of the microemulsions formed from liquid (116?nm) and IR-SET (110?nm). Conclusion: The novel IR-SET can be promising as a fast-releasing SEDDS tablet of IBU for fast onset of action.  相似文献   

4.
Conjugated polymers due to their reversible transition between the redox states are potentially able to immobilise and release ionic species. In this study, we have successfully developed a conducting polymer system based on poly(3,4-ethylenedioxythiophene) (PEDOT) for electrically triggered, local delivery of an ionic form of ibuprofen (IBU), a non-steroidal anti-inflammatory, and analgesic drug. It was shown that by changing the electropolymerisation conditions, the polymer matrix of specified IBU content can be synthesised. The electrochemical synthesis has been optimised to obtain the conducting matrix with the highest possible drug content. The process of electrically stimulated drug release has been extensively studied in terms of the dynamics of the controlled IBU release under varying conditions. The maximum concentration of the released IBU, 0.66 (±0.10) mM, was observed at the applied potential E = ?0.5 V (vs. Ag/AgCl). It was demonstrated that the immobilisation-release procedure can be repeated several times making the PEDOT matrix promising materials for controlled drug release systems applied e.g. in neuroprosthetics.  相似文献   

5.
Precipitation of basic drugs within oral prolonged release systems, at the higher pH values of the intestine, would affect drug release. Coevaporates of a model basic drug verapamil HCl, in single or mixed polymer systems, containing Eudragit L100 (L100) and ethyl cellulose or Eudragit RS100, were prepared from ethanolic solution. XRD and DSC indicated loss of crystallinity of the drug in the coevaporates. The presence of the enterosoluble polymer in the system was found to aid in faster dissolution of the drug at higher pH values. This was affected by the presence and type of retarding polymer present in the system. Compression of the coevaporates resulted in either very slow release of the drug or undesirable changes in the release profile. Pelletization of a coevaporate containing drug and L100 yielded systems, which released the drug uniformly when studied by the buffer change method in simulated gastric (SGF) and intestinal (SIF) fluids. The presence of L100 in intimate contact with the drug was found to be essential for the desirable drug release properties of the system. The drug release occurred predominantly by diffusion in SGF and by a combination of diffusion and polymer dissolution/erosion in SIF. Appropriate choice of release modifiers and formulation variables and development of suitable formulations can yield systems which compensate for the reduced solubility of the drug in the higher pH environments of the intestine.  相似文献   

6.
Thermo-sensitive nanocomposites based on mesoporous silica SBA-15 and poly(N-isopropylacrylamide) (PNIPAAm) have been synthesized via in situ radical polymerization in mesopores. The resultant materials were used as carriers to construct temperature-responsive controlled drug delivery systems. Loading of model drug ibuprofen (IBU) was ascertained by IR and UV-vis/DRS spectroscopy, and the mesostructure and pore properties of the delivery system were characterized by small-angle XRD and N2 adsorption-desorption experiment. Study on drug uptake indicated that higher polymer content in the composite, higher IBU concentration in loading solution and lower loading temperature below the lower critical solution temperature (LCST) could increase the loading amount of IBU by means of interaction between IBU and polymer and trap effect of the polymer chains in pores. Different from the uptake of IBU, however, the release of drug followed a positive temperature-responsive manner, that is, the release was accelerated upon heating above the LCST, while decelerated and lasted for a longer period of time below the LCST. This feature allows the material to function as a reversible fast/slow transition switch or rate regulator responsive to environmental temperature and to be potentially interesting in controlled delivery and other smart application fields.  相似文献   

7.
TiO_2/SiO_2复合中空微球的选择性改性与药物缓释性能研究   总被引:2,自引:0,他引:2  
以聚合物微球为模板,通过溶胶-凝胶法制备了TiO2/SiO2复合中空微球,并分别采用硬脂酸和无机磷酸对内层二氧化钛进行了疏水和亲水改性.扫描电镜(SEM)和氮气吸附-脱附结果表明中空微球具有完整的球形空腔和多孔的壳层孔道结构.傅立叶红外光谱(FTIR)证实了内部疏水及亲水改性层的存在.以布洛芬药物为对象,采用热重分析(TGA)和高效液相色谱(HPLC)考察了不同改性对复合中空微球的载药量及缓释性能的影响.研究结果表明,由于存在疏水作用,硬脂酸改性的中空微球载药量(189.8mg/g)高于未改性中空微球(177.5mg/g),且药物释放速率明显减慢,53h内药物释放率仅为55%;与此相反,无机磷酸亲水改性的中空微球载药量减小(为153.0mg/g),且释放速率提高,10h内释放了将近80%的药物.因此,采用不同的改性基团可以对复合中空微球的药物释放速率进行有效地调控.  相似文献   

8.
Abstract

Co-precipitates of pheniramine aminosalicylate in different types of Eudragit were prepared. IR spectra indicated the absence of molecular interaction between the drug and Eudragit. The effect of polymer type on the retardation of drug release rate was in the following order: Eudragit S 100> Eudragit L 100> Eudragit RSPM or Eudragit RS 100> Eudragit RLPM or Eudragit RL 100. The concentration of the polymer in the system was a determining factor in controlling the release rate of the drug. As the concentration of the polymer in the system increased, the release rate of the drug decreased.

Co-precipitates of the drug in different ratios of Eudragit blends were also prepared. The release rate of the drug decreased by decreasing the concentration of the permeable Eudragit RLPM or Eudragit RSPM in the system.

The rapid release rate of the drug from the physical mixtures excluded their application in controlling drug release.  相似文献   

9.
Nifedipine and its solid dispersions in hydroxypropyl methyl cellulose-microcrystalline cellulose (HPMC-MCC) were microencapsulated with Eudragit RL PM by an emulsion solvent evaporation method. The microcapsules are spherical, discrete, free flowing, and covered with a continuous coating of the polymer. XRD and DTA indicated the presence of nifedipine in solution form in the solid dispersions and their microcapsules. No chemical interaction between nifedipine and excipients in the microcapsules was observed. Nifedipine as such and its microcapsules gave very slow release because of its highly crystalline nature and poor solubility. Solid dispersion in HPMC-MCC gave fast and rapid dissolution of nifedipine. When these solid dispersions were microencapsulated a slow, controlled, and complete release over a period of 12 hr was observed from the resulting microcapsules. Drug release depended on the proportion of HPMC-MCC in the solid dispersion used as a core, coat, core ratio, and size of the microcapsules. Release was independent of pH and ionic strength. Drug release was governed by diffusion rate and followed first-order kinetics.  相似文献   

10.
Controlled release beads containing chlorpheniramine maleate, coated with Eudragit RL and RS, were prepared using the Wurster process. The effect of membrane thickness, polymer ratio of the coating material, agitation speed and pH of the dissolution medium on drug release were investigated using the USP dissolution basket method. The in vitro release of drug was described adequately by a previously published equation. The release rate constant (K) was dependent on the membrane thickness, the polymer ratio and pH of the dissolution medium. On the other hand, agitation speed used in this study did not have any influence on the release of the drug.  相似文献   

11.
ABSTRACT

Differential scanning calorimetry (DSC) was used to investigate and detect incompatibilities between drugs such as: ibuprofen (IBU) or ketoprofen (KETO) with cellulose ether derivatives, which are frequently applied on controlled release dosage forms. Binary mixtures concerning methylcellulose (MC25) or hydroxypropylcellulose (HPC) with hydroxypropylmethylcellulose (HPMC) K15M or K100M in different ratios were prepared and evaluated by the appearance, shift, or disappearance of peaks and/or variations in the corresponding ΔH values. According to the DSC results, binary mixtures between those polymers were found to be compatible, but their mixture with IBU or KETO, promotes a solid–solid interaction mainly with 1:1:1 (w/w) ratio (drug-excipient). However, when the drug:excipient interactions were detected, they were not found to affect the drug bioavailability. DSC was successfully employed to evaluate the compatibility of the drugs with the selected polymers.  相似文献   

12.
Purpose: Damar Batu (DB) is a novel film-forming biomaterial obtained from Shorea species, evaluated in this study for its potential application in transdermal drug delivery system. Methods: DB was characterized initially in terms of acid value, softening point, molecular weight (Mw), polydispersity index (Mw/Mn), and glass transition temperature (Tg). Neat, plasticized films of DB were investigated for mechanical properties. The biomaterial was further investigated as a matrix-forming agent for transdermal drug delivery system. Developed matrix-type transdermal patches were evaluated for thickness and weight uniformity, folding endurance, drug content, in vitro drug release study, and skin permeation study. Results: On the basis of in vitro drug release and in vitro skin permeation performance, formulation containing DB/Eudragit RL100 (60 : 40) was found to be better than other formulations and was selected as the optimized formulation. IR analysis of physical mixture of drug and polymer and thin layer chromatography study exhibited compatibility between drug and polymer. Conclusion: From the outcome of this study, it can be concluded that applying suitable adhesive layer and backing membrane-developed DB/ERL100, transdermal patches can be of potential therapeutic use.  相似文献   

13.
Abstract

Nifedipine and its solid dispersions in hydroxypropyl methyl cellulose-microcrystalline cellulose (HPMC-MCC) were microencapsulated with Eudragit RL PM by an emulsion solvent evaporation method. The microcapsules are spherical, discrete, free flowing, and covered with a continuous coating of the polymer. XRD and DTA indicated the presence of nifedipine in solution form in the solid dispersions and their microcapsules. No chemical interaction between nifedipine and excipients in the microcapsules was observed. Nifedipine as such and its microcapsules gave very slow release because of its highly crystalline nature and poor solubility. Solid dispersion in HPMC-MCC gave fast and rapid dissolution of nifedipine. When these solid dispersions were microencapsulated a slow, controlled, and complete release over a period of 12 hr was observed from the resulting microcapsules. Drug release depended on the proportion of HPMC-MCC in the solid dispersion used as a core, coat, core ratio, and size of the microcapsules. Release was independent of pH and ionic strength. Drug release was governed by diffusion rate and followed first-order kinetics.  相似文献   

14.
Abstract

Controlled release beads containing chlorpheniramine maleate, coated with Eudragit RL and RS, were prepared using the Wurster process. The effect of membrane thickness, polymer ratio of the coating material, agitation speed and pH of the dissolution medium on drug release were investigated using the USP dissolution basket method. The in vitro release of drug was described adequately by a previously published equation. The release rate constant (K) was dependent on the membrane thickness, the polymer ratio and pH of the dissolution medium. On the other hand, agitation speed used in this study did not have any influence on the release of the drug.  相似文献   

15.
The coprecipitates were prepared by a solvent technique using Eudragit E as carrier and indomethacin as a model drug.

X-Ray diffractometry, differential scanning calorimetry (DSC) and wettability tests were employed to investigate the physical state of the studied formulations. Up to 50% of indomethacin can be dispersed in an amorphous state in Eudragit E.

The influence of the pH on the in vitro release of solid dispersions has been evaluated. Because of the good solubility of Eudragit E at pH 1.2 a fast dissolution rate of the drug was observed while a marked delay was noticed at pH 7.5 where the polymer is only permeable to water. At pH 5.8 the kinetics of drug release can be modulated by the drug/polymer ratio. The dissolution rate of the drug can be increased by decreasing its amount in the coevaporate.  相似文献   

16.
Abstract

The effect of the molecular weight of polyvinylpyrrolidone on the solubility and dissolution properties of naproxen using solid dispersions (coevaporates and colyophilized products) and physical mixtures was investigated. Factors such as method of drug incorporation with the polymer and polymer mass fraction influence the dissolution rate of naproxen from both powders and constant surface area discs. The best results were obtained with the colyophilized products at the drug-to-polymer 7:3 weight ratio, in the rank order (most effective to least) K15>K30>lK90 (dispersed amount) and K30>K90>K15 (rotating disc). The physical state of naproxen, i.e. amorphous or crystalline, in solid combinations with polyvinylpyrrolidone was checked by means of X-ray powder diffraction. Drug-polymer interactions in the liquid state were revealed with solubility experiments. Drug-polymer interactions in solid state were demonstrated by combining the X-ray diffraction data with the results of thermal analysis (DSC, TGA) and microscopic observation.  相似文献   

17.
Tretinoin, or retinoic acid, can be used in the treatment of a variety of skin diseases, depending on its concentration. Formulations containing tretinoin 1 % have been used in the therapy of malignant cutaneous diseases, namely, Kaposi 's syndrome. In lower concentrations, it has been used in antiacne formulations and in the treatment of anti-aging effects on photodamaged skin. The aim of the present study was to determine the variation profile of in vitro release of tretinoin, in order to establish the drug's partition coefficient between its carrier and the stratum corneum. The samples studied were formulations of tretinoin 0, 05% in carbopol 940 (a synthetic polymer), sodium carboxymethylcellulose (a semisynthetic polymer), and carob gum (a natural polymer) gels. The release profiles obtained from these formulations were compared to release profiles of retinoid creams. The formulations studied exhibited both good chemical and physical stabilities when submitted to rheological determinations, pH measurements, and drug dosage, throughout a 6-month period. The obtained results show that identical polymer viscosities result in identical release profiles; however, the release kinetics of tretinoin varies strongly in the way in which the drug is incorporated in the formulation (whether it is a solution or a suspension).  相似文献   

18.
Abstract

The coprecipitates were prepared by a solvent technique using Eudragit E as carrier and indomethacin as a model drug.

X-Ray diffractometry, differential scanning calorimetry (DSC) and wettability tests were employed to investigate the physical state of the studied formulations. Up to 50% of indomethacin can be dispersed in an amorphous state in Eudragit E.

The influence of the pH on the in vitro release of solid dispersions has been evaluated. Because of the good solubility of Eudragit E at pH 1.2 a fast dissolution rate of the drug was observed while a marked delay was noticed at pH 7.5 where the polymer is only permeable to water. At pH 5.8 the kinetics of drug release can be modulated by the drug/polymer ratio. The dissolution rate of the drug can be increased by decreasing its amount in the coevaporate.  相似文献   

19.
The objective of this study is to explore matrix-type microparticles, comprising a solid dispersion of drug with an ammonio methacrylate copolymer and ethylcellulose binary blend, for use in the controlled release of a poorly water-soluble drug, nifedipine. Microparticles consisting of an ethylcellulose N7 (N7) and Eudragit RL® (RL) binary blend at different ratios were prepared using phase-separation methodology. The effects of matrix composition on microparticle properties were evaluated by polarized light microscopy, differential scanning calorimetry (DSC), FT-infrared and UV-visible spectroscopy, stability, and drug release studies. Study results indicate that the particle size distribution, particle morphology, and drug release rate from the microparticles were influenced by the ratio of RL to N7. Discrete spherical microparticles with a narrow size distribution and a controlled release profile were obtained when the ratio of RL to N7 was in the range from 1:1 to 2:1 w/w. Solid-state characterization and release kinetic studies on these microparticles confirmed that the nifedipine release from the microparticles followed the Baker and Lonsdale's matrix diffusion model (1974) for microspheres containing dissolved drug, and the nifedipine diffusion in the microparticle matrix was the rate-limiting step. As the ratio of RL to N7 was changed from 0:1 to 4:1 w/w, the effective drug diffusion coefficient in the micro-matrix increased from 5.8 × 10-10 to 8.6 × 10-9 (cm2/h). In addition, probably due to formation of a stable molecular dispersion promoted by hydrogen bonding between nifedipine and the polymers, no significant changes in the nifedipine physical form or release kinetics were observed after 1-year storage at ambient room temperature followed by 3-month accelerated stability at 40°C/75% RH in a closed container.  相似文献   

20.
The purpose of this study was to prepare and characterize solid dispersions of indomethacin with polyethylene glycol (PEG) 6000, Myrj 52, Eudragit® E100, and different carbohydrates such as lactose, mannitol, sorbitol, and dextrin. Indomethacin is a class II substance according to the Biopharmaceutics Classification System. It is a poorly water soluble antirheumatic agent. The goal was to investigate whether the solid dispersion can improve the dissolution properties of indomethacin. The solid dispersions were prepared by three different methods depending on the type of carrier. The evaluation of the properties of the dispersions was performed using solubility measurements, dissolution studies, Fourier‐transform infrared spectroscopy, and x‐ray powder diffractometery. The results indicate that lactose, mannitol, sorbitol, and especially Myrj 52 are suitable carriers to enhance the in vitro dissolution rate of indomethacin at pH 7.2. Eudragit E100, Myrj 52, and mannitol increase the dissolution properties at pH 1.2. The data from the x‐ray diffraction showed that the drug was still detectable in its solid state in all solid dispersions except solid dispersions with dextrin and high amounts of mannitol. However, the results from infrared spectroscopy together with those from x‐ray diffraction showed well‐defined drug–carrier interactions for dextrin coevaporates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号