首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Alumina (Al2O3) and alumina-yttria stabilized zirconia (YSZ) composites containing 3 and 5 mass% ceria (CeO2) were prepared by spark plasma sintering (SPS) at temperatures of 1350-1400 °C for 300 s under a pressure of 40 MPa. Densification, microstructure and mechanical properties of the Al2O3 based composites were investigated. Fully dense composites with a relative density of approximately 99% were obtained. The grain growth of alumina was inhibited significantly by the addition of 10 vol% zirconia, and formation of elongated CeAl11O18 grains was observed in the ceria containing composites sintered at 1400 °C. Al2O3-YSZ composites without CeO2 had higher hardness than monolithic Al2O3 sintered body and the hardness of Al2O3-YSZ composites decreased from 20.3 GPa to 18.5 GPa when the content of ZrO2 increased from 10 to 30 vol%. The fracture toughness of Al2O3 increased from 2.8 MPa m1/2 to 5.6 MPa m1/2 with the addition of 10 vol% YSZ, and further addition resulted in higher fracture toughness values. The highest value of fracture toughness, 6.2 MPa m1/2, was achieved with the addition of 30 vol% YSZ.  相似文献   

2.
Directionally solidified Al2O3/YAG/YSZ ceramic in situ composite is an interesting candidate for the manufacture of turbine blade because of its excellent mechanical property. In the present study, two directionally solidified hypoeutectic and hypereutectic Al2O3/YAG/YSZ ceramic in situ composites are prepared by laser zone remelting, aiming to investigate the solidification behavior of the ternary composite with off-eutectic composition under high-temperature gradient. The results show that the composition and laser scanning rate significantly influence the solidification microstructure. The ternary in situ composite presents ultra-fine microstructure, and the eutectic interspacing is refined with the increase of the scanning rate. The Al2O3/YAG/YSZ hypoeutectic ceramic displays an irregular hypoeutectic network structure consisting of a primary Al2O3/YAG binary eutectic and fine Al2O3/YAG/YSZ ternary eutectic. Only at low scanning rate, homogeneous ternary eutectic-like microstructures are obtained in the hypoeutectic composition. Meanwhile, the Al2O3/YAG/YSZ hypereutectic ceramic shows homogeneous eutectic-like microstructure in most cases and the eutectic interspacing is finer than the ternary eutectic. Furthermore, the formation and evolution mechanism of the off-eutectic microstructure of the ternary composite are discussed.  相似文献   

3.
In this work, hot-pressing of equimolecular mixtures of α- and β-Si3N4 was performed with addition of different amounts of sintering additives selected in the ZrO2–Al2O3 system. Phase composition and microstructure of the hot-pressed samples was investigated. Densification behavior, mechanical and thermal properties were studied and explained based on the microstructure and phase composition. The optimum mixture from the ZrO2–Al2O3 system for hot-pressing of silicon nitride to give high density materials was determined. Near fully dense silicon nitride materials were obtained only with the additions of zirconia and alumina. The liquid phase formed in the zirconia and alumina mixtures is important for effective hot-pressing. Based on these results, we conclude that pure zirconia is not an effective sintering additive. Selected mechanical and thermal properties of these materials are also presented. Hot-pressed Si3N4 ceramics, using mixtures from of ZrO2/Al2O3 as additives, gave fracture toughness, KIC, in the range of 3.7–6.2 MPa m1/2 and Vicker hardness values in the range of 6–12 GPa. These properties compare well with currently available high performance silicon nitride ceramics. We also report on interesting thermal expansion behavior of these materials including negative thermal expansion coefficients for a few compositions.  相似文献   

4.
The phase diagram of the Al2O3-HfO2-Y2O3 system was first constructed in the temperature range 1200-2800 °C. The phase transformations in the system are completed in eutectic reactions. No ternary compounds or regions of appreciable solid solution were found in the components or binaries in this system. Four new ternary and three new quasibinary eutectics were found. The minimum melting temperature is 1755 °C and it corresponds to the ternary eutectic Al2O3 + HfO2 + Y3Al5O12. The solidus surface projection, the schematic of the alloy crystallization path and the vertical sections present the complete phase diagram of the Al2O3-HfO2-Y2O3 system.  相似文献   

5.
Microstructure developments of melt-grown Al2O3/YAG/ZrO2 ceramic bulks were investigated by controlling composition, cooling rate, heterogeneous nucleation sites and melt superheating treatment. The solidification microstructure of sample with hypereutectic composition (ZrO2 20 mol%) is finer than that with hypoeutectic or eutectic ones. With increasing the cooling rate, microstructure of melt-grown samples develops from colony to dendrite and finally to cell. The microscopy and the components of samples vary with the melt superheating temperature and the type of heterogeneous nucleation sites. The microstructure evolutions of melt-grown Al2O3/YAG/ZrO2 eutectic relate to the melt undercooling level and the solid–liquid interfaces stability.  相似文献   

6.
The fine grains of Al2O3-Cr2O3/Cr-carbide nanocomposites were prepared by employing recently developed spark plasma sintering (SPS) technique. The initial materials were fabricated by a metal organic chemical vapor deposition (MOCVD) process, in which Cr(CO)6 was used as a precursor and Al2O3 powders as matrix in a spouted chamber. The basic mechanical properties like hardness, fracture strength and toughness, and the nanoindentation characterization of nanocomposites such as Elastics modulus (E), elastic work (We) and plastic work (Wp) were analyzed. The microstructure of dislocation, transgranular and step-wise fracture surface were observed in the nanocomposites. The nanocomposites show fracture toughness of (4.8 MPa m1/2) and facture strength (780 MPa), which is higher than monolithic alumina. The strengthening mechanism from the secondary phase and solid solution are also discussed in the present work. Nanoindentation characterization further illustrates the strengthening of nanocomposites.  相似文献   

7.
8.
The modification of ceramic surfaces by directional laser melting is interesting because it can eliminate surface defects and thus improve the ceramics mechanical performance, as long as one prevents the formation of cracks. The feasibility of surface modification by laser-assisted melting on large t-ZrO2-Al2O3 eutectic ceramic pieces was evaluated in this work. 0.4 mm thick, defect-free, resolidified layers were obtained on plates of 40 mm width by preheating at 1200 °C and processing at 1000 mm/h with a line-shaped CO2 laser beam and 580 W/cm2 irradiance. The surface finish was smooth, free from overlapping-track roughness. The resolidified layer had eutectic microstructure with lamellae-type Al2O3 and tetragonal ZrO2(t-ZrO2) colonies. The fracture tests of the samples confirmed the absence of crack-type resolidification defects and the removal of surface defects. Although no increase in average flexural strength was observed for surface resolidified samples, they showed significantly lower standard deviation.  相似文献   

9.
《Ceramics International》2016,42(7):8079-8084
The directionally solidified Al2O3/MgAl2O4/ZrO2 ternary eutectic ceramic was prepared via induction heating zone melting. Smooth Al2O3/MgAl2O4/ZrO2 eutectic ceramic rods with diameters of 10 mm were successfully obtained. The results demonstrate that the eutectic rods consist of Al2O3, MgAl2O4 and ZrO2 phases. In the eutectic microstructure, the MgAl2O4 and Al2O3 phases form the matrix, the ZrO2 phase with a fibre or shuttle shape is embedded in the matrix, and a quasi-regular eutectic microstructure formed, presenting a typical in situ composite pattern. During the eutectic growth, the ZrO2 phase grew on non-faceted phases ahead of the matrix growing on the faceted phase. The hardness and fracture toughness of the eutectic ceramics reached 12 GPa and 6.1 MPa·m 1/2, respectively, i.e., two times and 1.7 times the values of the pre-sintered ceramic, respectively. In addition, the ZrO2 phase in the matrix reinforced the matrix, acting as crystal whiskers to reinforce the sintered ceramic.  相似文献   

10.
Li4AlxTi5−xFyO12−y compounds were prepared by a solid-state reaction method. Phase analyses demonstrated that both Al3+ and F ions entered the structure of spinel-type Li4Ti5O12. Charge-discharge cycling results at a constant current density of 0.15 mA cm−2 between the cut-off voltages of 2.5 and 0.5 V showed that the Al3+ and F substitutions improved the first total discharge capacity of Li4Ti5O12. However, Al3+ substitution greatly increased the reversible capacity and cycling stability of Li4Ti5O12 while F substitution decreased its reversible capacity and cycling stability slightly. The electrochemical performance of the Al3+-F-co-substituted specimen was better than the F-substituted one but worse than the Al3+-substituted one.  相似文献   

11.
In this work we present the study of the interaction between NIR pulsed laser and Al2O3-ZrO2 (3%Y2O3) eutectic composite. The effect produced by modifying the reference position as well as the working conditions and laser beam features has been studied when the samples are processed by means of pulse bursts.The samples were obtained by the laser floating zone technique using a CO2 laser system. The laser machining was carried out with a Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulse-widths in the nanosecond range.Geometric dimensions, i.e. ablated depth, machined width and removed volume as well as ablation yield of the resulting holes have been studied. We have described and discussed the morphology, composition and microstructure of the processed samples.  相似文献   

12.
Porous aluminum oxide (Al2O3) preforms were formed by sintering in air at 1200 °C for 2 h. A356, 6061, and 1050 aluminum alloys were infiltrated into the preforms by squeeze casting in order to fabricate Al2O3/A356, Al2O3/6061, and Al2O3/1050 composites, respectively, with different volumes of aluminum alloy content. The content of aluminum alloy in the composites was 10–40% by volume. The resistivity of Al2O3/A356, Al2O3/6061, and Al2O3/1050 composites decreased dramatically from 6.41 × 1012 to 9.77 × 10−4, 7.28 × 10−4, and 6.24 × 10−4 Ω m, respectively, the four-points bending strength increased from 397 to 443, 435.1, 407.2 MPa, respectively, and the deviations were smaller than 2%. From SEM microstructural analysis and TEM bright field images, the pore volume fraction and the relative density of the composites were the most important factors that affected the physical and mechanical properties. The ceramic phase and alloy phase in Al2O3/aluminum alloy composites were found to be homogenized and uniformly distributed using electrical and mechanical properties analysis, microstructure analysis, and image analysis.  相似文献   

13.
A novel layered microstructure in the Al2O3/ZrO2 composites system was fabricated by the multipass extrusion method. The microstructure consisted with very fine alternate lamina of Al2O3-(m-ZrO2) and t-ZrO2. The composites were designed in such a way that a small group of 7 cylindrical alternate layers of Al2O3-(m-ZrO2) and t-ZrO2 made a concentric microgroup around 40 μm in diameter, with a common boundary layer between the adjacent groups. The thickness of both layers was around 2-3 μm. The microstructure was unidirectionally aligned throughout the composites. The composite microstructure was fibrous due to the unidirectional orientation of these microgroups. Detailed microstructure of the fabricated composites was characterized by SEM. The effect of the concentric layered microstructure on mechanical behavior was discussed. Material properties such as density, bending strength, Vickers hardness and fracture toughness were measured and evaluated depending on different sintering temperatures.  相似文献   

14.
Directionally solidified Al2O3/Er3Al5O12(EAG)/ZrO2 ternary eutectic/off-eutectic composite ceramics with high density, homogeneous microstructures, well-oriented growth have been prepared by laser floating zone melting at different solidification rates from 4 to 400 µm/s. Uniform and stable melting zone is obtained by optimizing temperature field distribution to keep continuous and stable eutectic growth and prevent from cracks and defects. The as-solidified composite ceramic exhibits complexly irregular eutectic structure, in which the eutectic spacing is rapidly refined but dotted ZrO2 number inside Al2O3 phase is decreased as increasing the solidification rate. The formation mechanism of ZrO2 distributed inside Al2O3 matrix is revealed by examining the depression of solid/liquid interface. Furthermore, after heat exposure 1500 °C for 200 h, the eutectic microstructure only shows tiny coarsening, which indicates it has excellent microstructural stability. As increasing the ZrO2 content, the fracture toughness can be improved up to 3.5 MPa m1/2 at 20.6 mol% ZrO2.  相似文献   

15.
Preparation of the (Ti1−xNbx)2AlC solid solution (formed from the Mn+1AXn or MAX carbides, where n = 1, 2, or 3, M is an early transition metal, A is an A-group element, and X is C) with x = 0.2-0.8 was investigated by self-propagating high-temperature synthesis (SHS). Nearly single-phase (Ti,Nb)2AlC was produced through direct combustion of constituent elements. Due to the decrease of reaction exothermicity, the combustion temperature and reaction front velocity decreased with increasing Nb content of (Ti1−xNbx)2AlC formed from the elemental powder compacts. In addition, the samples composed of Ti, Al, Nb2O5, and Al4C3 were adopted for the in situ formation of Al2O3-added (Ti,Nb)2AlC. The SHS process of the Nb2O5/Al4C3-containing sample involved aluminothermic reduction of Nb2O5, which not only enhanced the reaction exothermicity but also facilitated the evolution of (Ti,Nb)2AlC. Based upon the XRD analysis, two intermediates, TiC and Nb2Al, were detected in the (Ti,Nb)2AlC/Al2O3 composite and their amounts were reduced by increasing the extent of thermite reduction involved in the SHS process. The laminated microstructure characteristic of the MAX carbide was observed for both monolithic and Al2O3-added (Ti,Nb)2AlC solid solutions synthesized in this study.  相似文献   

16.
Al2O3/La2O3/Al2O3 (ALA) and Al2O3/LaAlO3/Al2O3 (A/LAO/A) multi-stacked films were deposited on Si substrates by MOCVD. No interfacial layers (AlxSiyOz) were observed in TEM images, and the thickness ratio of the tunnel oxide (bottom oxide), trap layer (middle oxide), and blocking oxide (top oxide) was about (1:1.3:3) in both films. Memory windows of the (ALA) and (A/LAO/A) films were 1.31 V and 3.13 V, respectively. Each value in the program/erase cycle test was maintained for up to 104 cycles.  相似文献   

17.
18.
Zirconia-toughened alumina (ZTA) ceramics were prepared using three different kinds of Al2O3 powders (marked PW-A average particle size: 7.53 μm, marked PW-B average particle size: 1.76 μm, marked PW-C average particle size: 0.61 μm) by gelcasting. Effect of Al2O3 particle size on zeta potential, dispersant dosage and solid volume fractions of ZTA suspensions as well as the mechanical properties of ZTA green bodies and ceramics were investigated. The optimum dosages of dispersant for ZTA suspensions prepared by PW-A, PW-B and PW-C are 0.4 wt%, 0.5 wt% and 0.7 wt%, respectively. The highest solid volume fractions of ZTA suspensions can reach 62 vol% (SP-A), 60 vol% (SP-B) and 52 vol% (SP-C), respectively. The green bodies show a bending strength as high as 20 MPa, which can meet the requirement of machining. The Al2O3 powder with fine particle size is beneficial to the improvement of mechanical properties. The ZTA ceramics prepared by PW-B Al2O3 powder show the highest bending strength (680 MPa) and toughness (7.49 MPa m1/2).  相似文献   

19.
In this paper, Al2O3-Si3N4/ZrO2-Al2O3 laminated composites were fabricated by tape casting and hot press sintering, and the relationships between the process, microstructure, and mechanical properties of Al2O3-Si3N4/ZrO2-Al2O3 laminated composites were determined. The SiAlON phase was found in the Al2O3-Si3N4 layer, and liquid-phase sintering was proposed. Nano-scratch tests were carried out to investigate the interface bonding strength of the laminates. The distribution of residual stresses, generated due to the different coefficients of thermal expansion between the different layers, was estimated according to lamination theory and confirmed using Vickers indentation. When the sintering temperature was 1550 °C, the sintered laminated ceramics had good mechanical properties, with a maximum strength and toughness of 413 MPa and 6.2 MPa m1/2, respectively. The main toughness mechanics of laminated composites was residual stress.  相似文献   

20.
Mullite-based multilayered structures have been suggested as promising environmental barrier coatings for Si3N4 and SiC ceramics. Mullite has been used as bottom layer because its thermal expansion coefficient closely matches those of the Si-based substrates, whereas Y–ZrO2 has been tried as top layer due to its stability in combustion environments. In addition, mullite/ZrO2 compositions may work as middle layers to reduce the thermal expansion coefficient mismatch between the ZrO2 and mullite layers. Present work studies the thermal behaviour of a flame sprayed mullite/ZrO2 (75/25, v/v) composite coating. The changes in crystallinity, microstructure and thermal conductivity of free-standing coatings heat treated at two different temperatures (1000 and 1300 °C) are comparatively discussed. The as-sprayed and 1000 °C treated coatings showed an almost constant thermal conductivity (K) of 1.5 W m−1 K−1. The K of the 1300 °C treated specimen increased up to twice due to the extensive mullite crystallization without any cracking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号