首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper is concerned with performance analysis of proportional-derivative/proportional-integral-derivative (PD/PID) controller for bounded persistent disturbances in a robotic manipulator. Even though the notion of input-to-state stability (ISS) has been widely used to deal with the effect of disturbances in control of a robotic manipulator, the corresponding studies cannot be directly applied to the treatment of persistent disturbances occurred in robotic manipulators. This is because the conventional studies relevant to ISS consider the H performance for robotic systems, which is confined to the treatment of decaying disturbances, i.e. the disturbances those in the L2 space. To deal with the effect of persistent disturbances in robotic systems, we first provide a new treatment of ISS in the L sense because bounded persistent disturbances should be intrinsically regarded as elements of the L space. We next derive state-space representations of trajectory tracking control in the robotic systems which allow us to define the problem formulations more clearly. We then propose a novel control law that has a PD/PID control form, by which the trajectory tracking system satisfies the reformulated ISS. Furthermore, we can obtain a theoretical argument about the L gain from the disturbance to the regulated output through the proposed control law. Finally, experimental studies for a typical 3-degrees of freedom robotic manipulator are given to demonstrate the effectiveness of the method introduced in this paper.  相似文献   

2.
In this paper, the problem of composite anti-disturbance resilient control is addressed for time-varying delay Markovian jump nonlinear systems with multiple disturbances. The disturbances are assumed to include two parts: the first one in the input channel is described by an external system with perturbations; the second one is supposed to be bounded H2 norm. By combining disturbance observer and L2L control method, the disturbances are attenuated and rejected, simultaneously, and the desired dynamic performance can be obtained for time-varying delay Markovian jump nonlinear systems. Moreover, the gains of the resilient controller and the observer are acquired by applying linear matrix inequalities (LMIs) technology. Finally, an application example is presented to show the effectiveness of the proposed approach.  相似文献   

3.
In this study, a PID‐type controller incorporating an adaptive learning scheme for the mixed H2/H tracking performance is developed for constrained robots under unknown or uncertain plant parameters and external disturbances. The mixed H2/H control design has the advantage of both H2 optimal control performance and H robust control performance and the adaptive control scheme is used to compensate the plant uncertainties. By virtue of the skew‐symmetric property of the constrained robotic systems and an adequate choice of state variable transformation, sufficient conditions are developed for the adaptive mixed H2/H tracking control problems in terms of a pair of coupled algebraic equations instead of a pair of coupled nonlinear differential equations. The proposed methods are simple and the coupled algebraic equations can be solved analytically. Simulation results indicate that the desired performance of the proposed adaptive mixed H2/H tracking control schemes for the uncertain constrained robotic systems can be achieved.  相似文献   

4.
A novel type of control scheme combined the distance‐observer‐based control (DOBC) with H control is proposed for a class of nonlinear time‐delay systems subject to disturbances. The disturbances are supposed to include two parts. One in the input channel is generated by an exogenous system with uncertainty, which can represent the harmonic signals with modeling perturbations. The other is supposed to have the bounded H2 norm. The disturbance observers based on regional pole placement and D‐stability theory are presented, which can be designed separately from the controller design. By integrating disturbance‐observer‐based control with H control laws, the disturbances can be rejected and attenuated, simultaneously, the desired dynamic performances can be guaranteed for nonlinear time‐delay systems with unknown nonlinear dynamics. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

5.
This paper presents a new approach for the design of robust H sliding mode observer (SMO) for a class of Lipschitz nonlinear systems where both faults and uncertainties are considered. A sufficient condition using linear matrix inequality (LMI) optimization is derived to guarantee the asymptotically stability of the estimation error dynamics and compute the observer gains. A fault estimation scheme is presented where the estimation signal can approximate the fault to some degree of accuracy. Our design approach has some advantages. The Lipschitz constant of the nonlinear term in the system and the disturbance attenuation level are maximized simultaneously through convex multiobjective optimization. For this reason, the Lipschitz constant is suitable to a large class of uncertain nonlinear systems. Moreover, the fault estimation is much more robust against disturbances and nonlinear uncertainty and can preserve the fault signal shape effectively. Finally, a simulation study on a robotic arm system is presented to show the effectiveness of this approach.  相似文献   

6.
A novel type of control scheme combining the disturbance‐observer‐based control (DOBC) with H control is proposed for a class of complex continuous models with disturbances. The disturbances are supposed to include two parts. One part in the input channel is generated by an exogenous system with uncertainty, which can represent the harmonic signals with modeling perturbations. The other part is supposed to have the bounded H2‐norm. Parametric uncertainties exist both in concerned plant and in exogenous subsystem. The disturbance observers based on regional pole placement and D‐stability theory are designed and integrated with conventional H control laws. The new composite DOBC and H control scheme is applied to complex continuous models for the case with known and unknown nonlinearity, respectively. Then the first type of disturbances can be estimated and rejected, and the second type can be attenuated; simultaneously, the desired dynamic performances can be guaranteed. Simulations for a flight control system are given to demonstrate the effectiveness of the results and compare the proposed results with the previous schemes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
To develop a controller that deals with noise-corrupted training data and rule uncertainties for interconnected multi-input–multi-output (MIMO) non-affine nonlinear systems with unmeasured states, an interval type-2 fuzzy system is integrated with an observer-based hierarchical fuzzy neural controller (IT2HFNC) in this paper. Also, an H control technique and a strictly positive real Lyapunov (SPR-Lyapunov) design approach are employed for attenuating the influence of both external disturbances and fuzzy logic approximation error on the tracking of errors. Moreover, the proposed hierarchical fuzzy structure can greatly reduce the number of adjusted parameters of the IT2HFNC, and then, the problem of online computational burden can be solved. According to the design of the interval type-2 fuzzy neural network and H control technique, the IT2HFNN controller can improve its robustness to noise, uncertainties, approximation errors, and external disturbances. Simulation results are reported to show the performance of the proposed control system mode and algorithms.  相似文献   

8.
When there are external disturbances acting on the system, the conventional Luenberger observer design for state estimation usually results in a biased state estimate. This paper presents a robust state and disturbance observer design that gives both accurate state and disturbance estimates in the face of large disturbances. The proposed robust observer is structurally different from the conventional one in the sense that a disturbance estimation term is included in the observer equation. With this disturbance estimation term, the robust observer design problem is skillfully transformed into a disturbance rejection control problem. We then can utilize the standard H control design tools to optimize the robust observer between the disturbance rejection ability and noise immune ability. An important advantage of the proposed robust observer is that it applies to both minimum‐phase systems and non‐minimum phase systems.  相似文献   

9.
In this study, an adaptive fuzzy‐based mixed H2/H tracking control design is developed in robotic systems under unknown or uncertain plant parameters and external disturbances. The mixed H2/H control design has the advantage of both H2 optimal control performance and H robust control performance and the fuzzy adaptive control scheme is used to compensate for the plant uncertainties. By virtue of the skew‐symmetric property in the robotic systems and adequate choice of state variable transformation, sufficient conditions are developed for the adaptive fuzzy‐based mixed H2/H tracking control problems in terms of a pair of coupled algebraic equations instead of a pair of coupled differential equations. The proposed methods are simple and the coupled algebraic equations can be solved analytically. Simulation results indicate that the desired performance of the proposed adaptive fuzzy‐based mixed H2/H tracking control schemes for the uncertain robotic systems can be achieved.  相似文献   

10.
This paper presents an observer based dynamic fuzzy logic system (DFLS) scheme for a class of unknown single-input single-output (SISO) nonlinear dynamic systems with external disturbances. The proposed approach does not need the availability of the state variables. Within this scheme, the DFLS is employed to identify the unknown nonlinear dynamic system. The control law and parameter adaptation laws of the DFLS are derived based on Lyapunov synthesis approach. The control law is robustfied in H sense to attenuate external disturbance, model uncertainties, and fuzzy approximation errors. It is shown that under appropriate assumptions, it guarantees the boundedness of all the signals in the closed-loop system and the asymptotic convergence to zero of tracking errors. The proposed method is applied to an inverted pendulum system to verify the effectiveness of the proposed algorithms.  相似文献   

11.
This paper considers the robust observer design problem for linear dynamic systems subject to the interference of external disturbances. For such systems, the state estimate from the conventional Luenberger is normally biased with respect to the true system state. To remedy this situation, this paper proposes a new structure for robust observers. With this new structure, the robust observer design problem is skillfully transformed into the well-known disturbance rejection control problem. The H optimal control design technique can then be applied to shape the proposed robust observer in the frequency domain. The proposed robust observer is a joint state and disturbance observer, which simultaneously estimates both the system state and unknown disturbances, and can be applied to non-minimum-phase systems.  相似文献   

12.
In this study, a robust nonlinear Lgain tracking control design for uncertain robotic systems is proposed under persistent bounded disturbances. The design objective is that the peak of the tracking error in time domain must be as small as possible under persistent bounded disturbances. Since the nonlinear Lgain optimal tracking control cannot be solved directly, the nonlinear Lgain optimal tracking problem is transformed into a nonlinear Lgain tracking problem by given a prescribed disturbance attenuation level for the Lgain tracking performance. To guarantee that the Lgain tracking performance can be achieved for the uncertain robotic systems, a sliding‐mode scheme is introduced to eliminate the effect of the parameter uncertainties. By virtue of the skew‐symmetric property of the robotic systems, sufficient conditions are developed for solving the robust Lgain tracking control problems in terms of an algebraic equation instead of a differential equation. The proposed method is simple and the algebraic equation can be solved analytically. Therefore, the proposed robust Lgain tracking control scheme is suitable for practical control design of uncertain robotic systems. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

13.
In this paper, the dynamic observer-based controller design for a class of neutral systems with H∞ control is considered. An observer-based output feedback is derived for systems with polytopic parameter uncertainties. This controller assures delay-dependent stabilization and H∞ norm bound attenuation from the disturbance input to the controlled output. Numerical examples are provided for illustration and comparison of the proposed conditions.  相似文献   

14.
The classical control design based on linearised model is widely used in practice even to those inherently nonlinear systems. Although linear design techniques are relatively mature and enjoy the simple structure in implementations, they can be prone to misbehaviour and failure when the system state is far away from the operating point. To avoid the drawbacks and exploit the advantages of linear design methods while tackling the system nonlinearity, a hybrid control structure is developed in this paper. First, the model predictive control is used to impose states and inputs constraints on the linearised model, which makes the linearisation satisfy the small-perturbation requirement and reduces the bound of linearisation error. On the other hand, a combination of disturbance observer-based control and H control, called composite hierarchical anti-disturbance control, is constructed for the linear model to provide robustness against multiple disturbances. The constrained reference states and inputs generated by the outer-loop model predictive controller are asymptotically tracked by the inner-loop composite anti-disturbance controller. To demonstrate the performance of the proposed framework, a case study on quadrotor is conducted.  相似文献   

15.
A fuzzy logic controller equipped with a training algorithm is developed such that the H tracking performance should be satisfied for a model-free nonlinear multiple-input multiple-output (MIMO) system, with external disturbances. Due to universal approximation theorem, fuzzy control provides nonlinear controller, i.e., fuzzy logic controllers, to perform the unknown nonlinear control actions and the tracking error, because of the matching error and external disturbance is attenuated to arbitrary desired level by using H tracking design technique. In this paper, a new direct adaptive interval type-2 fuzzy controller is developed to handle the training data corrupted by noise or rule uncertainties for nonlinear MIMO systems involving external disturbances. Therefore, linguistic fuzzy control rules can be directly incorporated into the controller and combine the H attenuation technique. Simulation results show that the interval type-2 fuzzy logic system can handle unpredicted internal disturbance, data uncertainties, very well, but the adaptive type-1 fuzzy controller must spend more control effort in order to deal with noisy training data. Furthermore, the adaptive interval type-2 fuzzy controller can perform successful control and guarantee the global stability of the resulting closed-loop system and the tracking performance can be achieved.  相似文献   

16.
In this paper, a robust H control problem is considered for an uncertain singular system. An active disturbance rejection method called equivalent input disturbance (EID) is used to reduce the influence of exogenous disturbances and uncertainties on the system. At the first, there exists an EID, which can produces the same effect on the system as disturbances and uncertainties do in the control channel according to the EID concept. Then, an EID estimator is constructed to estimate the influence of EID on the system. Finally, based on Lyapunov stability theory, a static output feedback‐based robust H controller combined with EID estimate is designed, guaranteeing that closed‐loop system is admissible (regular, impulse‐free, and stable) with a prescribed H performance level. Compared with traditional H control method, H control based on EID method improve the control performance of the system. A numerical example demonstrates the validity of the method.  相似文献   

17.
利用一种非线性干扰观测器观测减摇鳍系统的不确定性和随机海浪干扰,通过选择设计参数使观测误差指数收敛.针对引入非线性干扰观测器后的系统采用滑模反演法设计控制器,控制律的设计保证了闭环系统的稳定性.仿真结果表明,在不同浪向角和航速的各种海况下采用该控制策略,系统均能取得较好的减摇效果,同时能很好地克服对象的不确定性和随机海浪干扰,鲁棒性较强.  相似文献   

18.
In this paper, antidisturbance control and estimation problem are discussed for a class of discrete‐time stochastic systems with nonlinearity and multiple disturbances, which include the disturbance with partially known information and a sequence of random vectors. A disturbance observer is constructed to estimate the disturbance with partially known information. A composite hierarchical antidisturbance control scheme is proposed by combining disturbance observer and H control. It is proved that the 2 different disturbances can be rejected and attenuated, and the corresponding desired performances can be guaranteed for discrete‐time stochastic systems with known and unknown nonlinear dynamics, respectively. Simulation examples are given to demonstrate the effectiveness of the proposed scheme.  相似文献   

19.
A new approach for the design of robust H observers for a class of Lipschitz nonlinear systems with time‐varying uncertainties is proposed based on linear matrix inequalities (LMIs). The admissible Lipschitz constant of the system and the disturbance attenuation level are maximized simultaneously through convex multiobjective optimization. The resulting H observer guarantees asymptotic stability of the estimation error dynamics and is robust against nonlinear additive uncertainty and time‐varying parametric uncertainties. Explicit norm‐wise and element‐wise bounds on the tolerable nonlinear uncertainty are derived. Also, a new method for the robust output feedback stabilization with H performance for a class of uncertain nonlinear systems is proposed. Our solution is based on a noniterative LMI optimization and is less restrictive than the existing solutions. The bounds on the nonlinear uncertainty and multiobjective optimization obtained for the observer are also applicable to the proposed static output feedback stabilizing controller. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
In this article, the elegant antidisturbance fault‐tolerant control (EADFTC) problem is studied for a class of stochastic systems in the simultaneous presence of multiple heterogeneous disturbances and time‐varying faults. The multiple heterogeneous disturbances include white noise, norm bounded uncertain disturbances and uncertain modeled disturbances with multiple nonlinearities and unknown amplitudes, frequencies, and phases. The time‐varying fault signals are caused by lose efficacy of actuator. To online estimate uncertain modeled disturbances and time‐varying faults, a novel composite observer structure consisting of the adaptive nonlinear disturbance observer and the fault diagnosis observer is constructed. The novel EADFTC strategy is proposed by integrating composite observer structure with adaptive disturbance observer‐based control theory and H technology. It is proved that all the signals of closed‐loop system are asymptotically bounded in mean square under the circumstances of multiple heterogeneous disturbances and time‐varying faults occur simultaneously. Finally, the effectiveness and availability of proposed strategy are demonstrated by means of the numerical simulation and a doubly fed induction generators system simulation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号