首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a low voltage pulsed magnetic field (LVPMF) on grain refinement of Al-Cu alloy was investigated at different solidification stages. The cooling curve was also studied to investigate the grain refinement mechanism of LVPMF. The fine grains are obtained by applying the LVPMF during the nucleation stage. The LVPMF has no obvious influence on the solidification structure when it is applied during liquid phase stage or crystal growth stage. Application of LVPMF increases the nucleation temperature of the isomorphous transformation, and also decreases the recalescence magnitude of the alloy. The refining mechanism was proposed that the LVPMF provides extra energy for nucleation, which decreases the energy barrier and the critical radius for nucleation, leading to high nucleation rate and grain refinement.  相似文献   

2.
研究低压脉冲磁场对IN718高温合金凝固组织细化的影响。结果表明:在低压脉冲磁场作用下可以获得完全细小的等轴晶组织。熔体冷却速度和过热度显著影响低压脉冲磁场的细化效果,降低冷却速度和过热度有利于提高脉冲磁场的细化效果。利用商业有限元软件模拟计算高温合金凝固过程中熔体中的电磁力和流场分布情况以揭示脉冲磁场的细化机制。认为脉冲磁场引起的熔体对流,以及同熔体冷却速度和过热度的合理配合是合金凝固组织细化的主要原因。  相似文献   

3.
The influence of temperature conditions on the grain refinement of pure Cu solidified with low-voltage pulsed magnetic field (LVPMF) was investigated. With the pouring temperature (Tp) and mould temperature (Tm) increasing, the solidified microstructure of pure Cu was gradually changed from fine equiaxed grains to coarse columnar grains and then to the mixed structure of coarse equiaxed grains and columnar grains. Little change was observed from the microstructure of pure Cu solidified with and without LVPMF for the low Tp and Tm. But for the high Tp and Tm, applying LVPFM remarkably reduced the coarse columnar grains and obtained fine equiaxed grains. The grain refinement by LVPFM is considered to be caused by the electromagnetic flow. The smaller cooling rate resulted by higher Tp and Tm offers much acting time for LVPMF and thus better grain refinement can be achieved.  相似文献   

4.
The effect of the pulsed magnetic field on the grain refinement of superalloy K4169 has been studied in directional solidification. In the presence of the solid-liquid interface condition, the distributions of the electromagnetic force, flow field, temperature field, and Joule heat in front of the solid-liquid interface in directional solidification with the pulsed magnetic field are simulated. The calculation results show that the largest electromagnetic force in the melt appears near the solid-liquid interface, and the electromagnetic force is distributed in a gradient. There are intensive electromagnetic vibrations in front of the solid-liquid interface. The forced melt convection is mainly concentrated in front of the solid-liquid interface, accompanied by a larger flow velocity. The simulation results indicate that the grain refinement is attributed to that the electromagnetic vibration and forced convection increase the nucleation rate and the probability of dendrite fragments survival, for making dendrite easily fragmented, homogenizing the melt temperature, and increasing the undercooling in front of the solid-liquid interface.  相似文献   

5.
张勤  崔建忠  路贵民  班春燕 《金属学报》2003,39(10):1115-1120
研究了电磁振荡作用下7075铝合金半连铸坯微观组织及溶质元素的晶内分布,对其细化、非枝晶组织形成及溶质元素晶内含量的影响机制进行了探讨。认为在电磁振荡作用下,熔体中结晶核心增加,游离晶粒的枝晶生长方式得到抑制是形成均匀细小的近球形和蔷薇形非枝晶组织的原因,并从电磁场改变7075铝合金凝固过程中的溶质分配系数、结晶间隔、液穴内部温度场、流动场以及微观组织形貌等方面出发,分析了电磁振荡对溶质元素晶内含量的影响。  相似文献   

6.
机械振动对纯Al晶粒细化及凝固收缩的影响   总被引:1,自引:0,他引:1  
研究了振动场对纯Al晶粒细化和凝固收缩的影响,并着重进行理论分析。实验结果表明:振动能明显细化晶粒,改善收缩。随着振动的加强,纯Al中心的等轴晶区逐渐增大,边缘部位的柱状晶区逐渐减小,当振击力达到81.87N时整个试样端面全部变为等轴晶。理论分析认为:振动引起的强烈冲击和搅拌作用使金属液产生晶粒游离、增殖、快速冷却是晶粒细化和收缩改善的根本原因。  相似文献   

7.
研究了K4169高温合金在各种工艺条件下及向熔体中加入复合细化剂时的晶粒组织。结果表明,降低浇注温度和加入复合细化剂可以明显细化冷凝后基体的晶粒和提高铸件断面等轴晶的比例。在通常的浇注温度1400℃下加入复合细化剂。对合金熔体进行或不进行过热处理时,可使圆柱锭的晶粒分别细化至ASTM1.7级和ASTM3.2级;断面等轴晶的比例分别达96%和99%以上。当浇注温度为1420℃、加入复合细化剂并对合金熔体进行过热处理时。可使圆柱锭晶粒细化至ASTM M10.5级,断面等轴晶的比例达90%以上。提出了晶粒细化的机理并对晶粒细化后断面等轴晶比例增大的现象进行了分析。  相似文献   

8.
The effects of pulsed magnetic field on the solidified microstructure of an AZ91D magnesium alloy were investigated. The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied in the solidification of AZ91D alloy. The average grain size of the as-cast microstructure of AZ91D alloy is refined to 104 μm. Besides the grain refinement, the morphology of the primary α-Mg is changed from dendritic to rosette, then to globular shape with changing the parameters of the pulsed magnetic field. The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface by the magnetic pressure, which makes the nucleation rate increased and big dendrites prohibited. In addition, primary α-Mg dendrites break into fine crystals, resulting in a refined solidification structure of the AZ91D alloy. The Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms.  相似文献   

9.
The solidification structures of alloy 800H fabricated with and without linear electromagnetic stirring (L-EMS) were investigated. The results show that the solidification structure of the alloy can be obviously affected by the forced convection in melt caused with L-EMS decreases from 3.5 mm to 2.3 mm, by L-EMS. The average size of equiaxed grains of the alloy and the ratio of equiaxed grain increases from 5% to 43% compared with that without L-EMS. The microstructure of the alloy without L-EMS is composed of fine equiaxed dendrites in the outermost layer and columnar dendrites in other areas, whereas that with L-EMS contains equiaxed dendrites, columnar dendrites and cross dendrites. In addition, the mechanism of dendrite fragment drift was proved by examining the composition change of the main alloying elements in the dendrite trunks at different solidification stage using an electron probe micro-analyzer (EPMA).  相似文献   

10.
Heat transfer of flow melt and grain refining mechanism during melt treatment by the cooling sloping plate were investigated.The results show that the cooling sloping plate can refine not only grains of alloys but also can obviously refine pure metal.Cooling ability of the plate is the key factor that induces grain refining,the plate material and the flow amount can affect cooling rate of the melt and thus affect refining effectiveness.The cooling rate of the melt on the cooling sloping plate is much faster than that of the conventional casting process,which can reach 1000 K/s and belongs to meta-rapid solidification scope.The thickness of the temperature boundary layer is much larger than that of the velocity boundary layer on the sloping plate,but the temperature gradient is small in the temperature boundary layer.Under strong cooling action by the cooling plate,most parts of the melt on the plate surface can form undercooling,which causes continuous eruptive nucleation,this is the main grain refining mechanism,and the heterogeneous nucleation on the plate surface is a helpful supplement for the nucleation.  相似文献   

11.
采用新型的自孕育法制备AZ91D镁合金半固态浆料,研究了导流器在半固态组织形成中的作用.结果表明,合金熔体加入孕育剂并经导流器浇注后,导流器吸收大量过热,使合金温度迅速降低至液相线附近;合金液在导流器表面流动时,导流器促进了熔体中非均质形核及游离晶粒的产生,使合金凝固时晶粒增殖.导流器表面凝固组织从上至下依次为树枝晶、细小树枝晶、等轴晶;倾斜角度影响合金流动方式及传热效果,角度过大和过小均不利于晶粒增殖,角度为45°时冷却效果和剪切作用最佳,此时合金有效形核数量最多,半固态浆料组织初生相细小且分布均匀.  相似文献   

12.
超声波开始导入时的熔体温度对Al-Cu合金铸锭组织的影响   总被引:4,自引:0,他引:4  
李军文  桃野正 《铸造技术》2004,25(4):248-250
研究超声波开始导入时的熔体温度(即熔体过热度)对铝铜合金铸锭组织的影响,分析超声波处理条件下,熔体过热度对铝铜合金铸锭细化率的影响因素.结果表明,随着开始导入时熔体过热度的增加,铸锭的细化效果大幅度地降低.  相似文献   

13.
采用自孕育铸造法制备AM60镁合金半固态坯料,研究导流器参数对半固态组织的影响规律及组织形成机理。结果表明:导流器能有效促进合金组织由树枝晶向等轴晶及颗粒状晶的转变;熔体处理温度和孕育剂加入量一定时,导流器的相关参数,如角度、长度、温度、混合段的凹槽宽度,均影响合金的传热及流动,进而影响其凝固组织;在导流器角度为30°~45°、长度为500 mm、混合段凹槽宽度为50 mm、且通水冷却时可以获得细小颗粒状或蔷薇状的半固态坯料,初生α-Mg的平均晶粒尺寸为37.5μm;减小导流器出口宽度有利于增强液体紊流,促进晶粒均匀分布;导流器促进了熔体非均质形核及激冷晶的形成,增强了晶粒增殖;熔体对流使合金的温度场和浓度场更均匀,晶粒生长以颗粒状生长、蔷薇晶根部颈缩熔断和磨圆熟化机制为主。  相似文献   

14.
Abstract

A novel method for nucleation and detachment of dendrites from a vibrating chilling solid surface inserted into the NH4Cl–H2O alloy melt has been proposed to further increase the proportion of equiaxed grains in the solidification microstructure. The surface nucleation and evolution behaviours of dendrites on the chilling generator with vibration were observed, and the effects of vibration frequency as well as amplitude on the equiaxed crystallographic morphology were also experimentally studied. The results show that exerting vibration to the chilling generator is helpful to not only prevent the formation of solidifying shell but also promote to form equiaxed grains microstructure, and that the higher vibration frequency and amplitude are, the much finer equiaxed grains are obtained.  相似文献   

15.
The effects of electromagnetic vibration on the grain refinement in directional solid- ification were investigated. It was found that the electromagnetic vibration applied in the melt not only can refine grains remarkably but also can enhance both tensile strength and ductility values of AI-6%Si alloy. SEM graphs show that coarse dendrite structure was broken up into a somewhat globular structure, and the morphology of eutectic silicon was changed from flaky to fibrous under electromagnetic vibration treatment. The refine mechanism under electromagnetic vibration was discussed.  相似文献   

16.
M. Wu  A. Ludwig 《Acta Materialia》2009,57(19):5621-5631
Part I of this two part investigation presents a modified volume-averaged equiaxed solidification model which accounts for nucleation, globular grain growth, globular-to-dendritic transition, dendritic growth, formation of extra- and interdendritic eutectic, grain transport and melt convection, and their influence on microstructure and macrosegregation. Globular grain growth is governed by diffusion around a spherical grain. For the dendritic growth, a “natural” grain envelope smoothly enclosing the primary and secondary dendrite tips is assumed to separate the interdendritic melt from the extradendritic melt. The solid dendrites and interdendritic melt, confined in the “natural” grain envelope, combine to form a dendritic grain. Two “hydrodynamic” phases are considered: the extradendritic melt and the equiaxed grains; and three thermodynamic phase regions are distinguished: the solid dendrites, the interdendritic melt and the extradendritic melt. The velocities of the hydrodynamic phases are solved with a two-phase Eulerian approach, and transport of the mass and solute species of each thermodynamic phase region are considered individually. Growth kinetics for the grain envelope and the interdendritic melt solidification are implemented separately. Simplification of the grain dendritic morphology and treatment of the non-uniform solute distribution in the interdendritic melt region are detailed. Illustrative modeling results and model verification are presented in Part II.  相似文献   

17.
熔体过热对AISI 304不锈钢亚快速凝固薄带组织的影响   总被引:2,自引:0,他引:2  
采用水冷铜模薄带铸造方法研究了熔体过热对AISI 304不锈钢亚快速凝固薄带组织的影响.结果表明:AISI 304不锈钢亚快速凝固薄带由外层的胞状奥氏体组织、次外层的柱状铁素体枝晶组织和中心的等轴铁素体枝晶组织组成;随着熔体过热度增加,奥氏体胞晶间距和柱状铁素体二次枝晶间距随之增加,残余铁素体含量亦降低.过热度的增加降低了熔体过冷度和冷却速率,造成薄带凝固组织中枝晶间距的增加和残余铁素体含量的降低.  相似文献   

18.
熔体超声波处理对Al-5%Si铸锭凝固组织的影响   总被引:1,自引:0,他引:1  
为了研究超声波对金属熔体凝固过程中的影响,使用Al-5%Si合金进行了实验.在实验中采用几种不同的方法处理金属熔体:不添加除气剂、只添加除气剂、既添加除气剂又进行超声波处理.利用克劳修斯-克拉柏龙方程分析了超声波细化金属铸锭凝固组织的机理.结果表明,除气剂的添加与否对Al-5%Si合金铸锭组织的细化没有影响,铸锭由粗大的柱状晶组织构成;采用合适的超声波处理时间,Al-5%Si合金铸锭的等轴晶获得率大幅度提高,可使整个铸锭组织变为细化的等轴晶组织;超声波振动时间过长将导致铸锭内气孔的增加;根据克劳修斯-克拉柏龙方程,某一强度的超声波引起的压力冲击波作用,导致液相转变为固相,引起了超声波的细晶作用.  相似文献   

19.
Abstract

Intensive shearing was applied to alloy melts at temperatures above their liquidus by using a twin-screw mechanism. The sheared melt was then cast into a TP1 mould for microstructural examination. Alloy melts with or without shearing were also filtered using the Prefil technique developed by N-Tech Ltd in order to analyse oxides and other second phase particles. The experimental results showed a significant grain refinement through enhancement of heterogeneous nucleation. The intensive melt shearing converted oxide films and agglomerates into well dispersed fine particles with a narrow size distribution. It was confirmed that the fine oxide particles can act as potent sites for nucleation during the solidification of the sheared melt. This paper presents the experimental results and theoretical analysis of shear enhanced heterogeneous nucleation during solidification of Mg- and Al-alloys. A multi-step heterogeneous nucleation mechanism has been proposed and discussed.  相似文献   

20.
CREM法半连续铸造Al合金非枝晶组织的形成机制   总被引:13,自引:0,他引:13  
研究了低频电磁场作用下7075Al合金半连续铸坯的微观组织。结果表明:铸坯由近球形和蔷薇形晶粒构成。且随磁场强度增大,近球形组织增加,蔷微形组织减少,整体组织变得细小均匀,这种非晶组织的形成机制可解释为:电磁场作用下,从结晶器壁游离的晶粒数量增多,使熔体中的晶核心增加。此外,游离晶粒随对流熔体一同运动以及晶粒自身的旋转运动抑制了其按枝晶方式生长,从而导致最终形成细小均匀的非枝晶组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号