首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The planning Yalong-River water transfer project will transfer 5.65 billion cubic meters water from the Yalong River into the Yellow River per year.The Yalong River will be dramatically impacted hydrologically and ecologically because more than 60% of the runoff will be diverted.An ecohydrological model was used to evaluate the impacts of the project on river corridor and wetland in this study.Schizothorax is a typical plateau river species and was used as the indicator species for assessment of the impact of water transfer project.The model simulated the habitat area of Schizothorax in the reach between the Reba Dam and the Ganzi Hydrology Station on the Yalong River.The Reba Dam,A’an Dam and Renda Dam will be constructed in the Yalong River for enhancing the water level for water diversion into the Yellow River.The velocity,channel width,runoff,and water depth will be reduced due to the water transfer,especially during flood season.The reduction in the velocity,channel width,runoff and water depth will occur mainly in the reach near the three dams and the reduction will be reduced to a minimum level in a distance about 100 km downstream of the dams.The maximum net water loss of Kasha Lake is only 1197200 m3,only 0.3% of runoff flowing into the lake.The project cannot bring adverse effect on the lake.The habitat area of Schizothorax in the Yalong River might be reduced if the water was transferred from the Reba Dam.The habitat area of this species will be reduced more than 40%.  相似文献   

2.
This paper presents an analysis of the changes of the longitudinal and lateral profiles in the meander- ing reach of the Lower Wei River over the period from October 1973 to October 1976 during the course of degradation.Analysis results indicated that retrogressive erosion and subsequent downstream erosion occurred in the reach due to the lowering in the Tongguan elevation and the inflowing water carrying low sediment con- centrations.At the end of the degradation,the main channel widths of the majority of sections were increased by 70 to 110 percent,and the elevation differences between the main channel and the floodplain were de- creased slightly by 2 to 45 percent,which caused a decrease in the water stage under the same discharge,the formation of a channd with relatively wide and shallow cross-sectional profiles,and an increase of 50 to 150 percent in the geomorphological coefficients.Therefore,the degradation in this reach was mainly characterized by channel widening,not by channel undercutting.  相似文献   

3.
In order to analyze mechanism of casing damage,the uniaxial compression experiment and creep experiment of interbedded mudstone samples from Sanan development area of Daqing Oilfield under different water contents were carried out.The changes of the mudstone’s mechanical parameters and creep characteristics with the increment of water saturation were studied.The results indicate that the rock strength and elastic modulus decrease rapidly with the increment of water content,at the same time,the creep strain and creep strain rate of steady state increase with the increment of water content,and also the steady state creep strain rate is enhanced with the increment of deviatoric stress.Through the creep characteristic curves,a non-linear creep constitutive equation of mudstone considering the change of water contents is established,which will be used in future numerical analysis.  相似文献   

4.
Based on the analysis method for tailings dam in upstream raising method presently used in metallurgy and nonferrous metals tailings depository in the world, an effective stress analysis method of seismic response for high tailings dam was developed according to the results of engineering geological exploration, static and dynamic test and stability analysis on Baizhishan tailing dam 113.5 m high. The law of generation, diffusion and dissipation of seismic pore water pressure during and after earthquake was investigated, and the results of tailings dam’s acceleration, seismic dynamic stress and pore water pressure were obtained. The results show that the seismic stability and liquefaction resistance of high tailings dam are strengthened remarkably, and the scope and depth of liquefaction area at the top of dam are reduced greatly. The interior stress is compressive stress, the stress level of every element is less than 1.0 and the safety coefficient of every element is greater than 1.0. The safety coefficient against liquefaction of every element of tailing dam is greater than 1.5 according to the effective stress analysis of seismic response by finite element method. The calculated results prove that liquefaction is the main reason of seismic failure of high tailing dams, and the effect of seismic inertia forces on high tailing dams’ stability during earthquake is secondary reason.  相似文献   

5.
Numerous gravel-bed rivers are affected by unceasing degradation problems,mostly caused or in- creased by technical measures upstream.In Germany removing the bank fixations is regarded as a concept to dissolve the problem.By allowing lateral erosion and in consequence river widening the bed load transport ca- pacity will be decreased.Additionally the eroded bank material will serve as additional sediment influx. Nevertheless in some cases additional measures are required for a sustainable stabilization of the river bed.Since several years ramps consisting of boulders are used for a reduce of the slope.Despite some ecologi- cal and esthetical advantages they cannot accomplish all requirements related to a migration of fishes and organ- isms.Ramps having a breach in their centre offer better conditions concerning the migration and the sediment transport.Actually they are under theoretical and experimental investigation for a project in Germany.This pa- per illustrates exemplarily some results of the preliminary investigations about breach ramps as well as results of the large scale tests on river widening.  相似文献   

6.
Impermeable bentonite or its mixtures have been proposed as candidate materials to be used in the geotechnical disposal of radioactive nuclear waste. These materials are filled in the space between a canister containing radioactive nuclear waste and an underground chamber to absorb the radionuclide emitting from the canister and simultaneously retard its migration accompanying the permeation of underground water to prevent the surrounding environment from pollution. On the basis of the established elastoplastic strain-hardening mechanical model considering the material‘s dilatancy character, the authors carry out the stress-strain analysis of a thick-wall cylinder in a plane strain state subjected to a pressure difference between internal and external pressures. The analysis may be expected to be a theoretical basis for developing a coupled shear and permeability test apparatus for conducting a permeability test along a sheared plane in a specimen. The apparatus will be used to study the effects of shear strain on the variation of geotechnical materials′ permeability coefficient in order to evaluate the influence of shear strain caused by nonuniform deformation and/or earthquake on the long-term safety of the disposal system of radioactive nuclear waste. The theoretical analysis methods in this paper can be directly spread to the analysis of the deformation and stability of tunnels or roadways driven in soft soils or high moisture-bearing soft rocks.  相似文献   

7.
Bed Load Motion and its transport rate is one of the basic issues in river dynamics.In this paper, the authors discussed the stochastic nature of bed load motion in Chuanjiang River in details.Chungjiang lies in the upstream reach of Yangtze River.Its stochastic nature is shown in the following four aspects.Firstly, even though all the conditions are the same,due to the fluctuation of the flow,the bed load discharge and the location and width of sediment transport belts are different.Secondly,during the process of bed load motion, pebbles show the strong nature of intermittence.Thirdly,the sediment discharges through upstream and down- stream reach are not equal,i.e.the pebble motion exists the discontinuity.Fourthly,annual mean transport rates of bed load for different stations are different and variation of transport rate of pebbles for a given station with year is large.The four aspects will be discussed one by one detailedly.  相似文献   

8.
The Yellow River is well known as a sediment-laden river, which is the main reason that it cannot be controlled as easily as other rivers. Many researchers, such as Qian Ning et al., have found that the sediment load of the Yellow River comes mainly from the sandy and gritty area of the Loess Plateau. Therefore, it is very important to simulate the sediment yield in this area. This paper proposes a method to compute the sediment production in the sandy and gritty area based on the digital watershed model. The suggested model is calibrated and validated in the Chabagou basin, which is a small catchment in the study area. Finally, the model simulates the sediment yield of the sandy and gritty area in 1967, 1978, 1983, 1994 and 1997, which represents a high water and high sediment year, a mean water and mean sediment year, a high water and low sediment year, a low water and high sediment year, and a low water and low sediment year separately. The simulation results, including the runoff depth and erosion modulus, can well explain the "low water and high sediment" phenomena in the Yellow River basin. The total amount of the sediment production and its distribution generated by the model is very useful for water and soil conservation in the sandy and gritty area of the Loess Plateau.  相似文献   

9.
Simulation of dike-break processes in the Yellow River   总被引:4,自引:0,他引:4  
Although dike-break and dam-break processes have similar unsteady and discontinuous hydrodynamic characteristics, there are significant differences. In general, dam-break simulations focus on the flood discharge, whereas dike-break simulations are required to provide detailed information on the hydraulic and breach evolution processes, such as pit-scour and breach-expansion. In order to overcome the difficulties inherent in applying existing dam-break models to dike-breaks, this paper presents an integrated model that combines the shallow water, sediment transport, riverbed deformation and breach-expansion equations. A Godunov-type finite volume method is used for the flow simulation, based on a fixed quadtree grid system. The hydro-dynamic aspects of the model are validated for an idealized rectangular dam break. A representative reach in the Yellow River is selected at a location where there is a significant risk of a dike-break, and full-scale topographic and hydrologic data are available. Typical di  相似文献   

10.
Changes in the sediment load of a river can have important impacts on river channel evolution,nutrient fluxes,aquatic ecology and delta erosion and sedimentation,and the possibility of changes in the sediment load of the Lancang-Mekong River has attracted increasing concern in recent years.Existing studies present conflicting findings regarding the nature and magnitude of recent changes in the sediment load of the Lancang-Meking River and the authors have attempted to assemble the most reliable data on annual sediment loads for the period 1965-2003,to assess recent trends in the sediment load of the river.The changes in annual sediment load at 7 stations on the river are analyzed.Important sediment contributing areas are found in the reaches between Gajiu and Yunjinghong,Chiang Saen and Luang Prabang and downstream of Nong Khai.The sediment load increased at Gajiu,Yunjinghong and Chiang Saen over the period 1985-1992 because of serious soil erosion caused by the expansion of cultivation,the replacement of natural forest by plantations and land disturbance associated with hydropower dam construction.A marked reduction in sediment load occurred at Gajiu after the impoundment of the Manwan Hydropower dam on the Lancang River,but this reduction was not evident downstream at Yunjinghong and the stations further downstream.Significant increases in sediment load appeared at Mukdahan and Khong Chiam.These contrasting patterns of change reflect the influence of sediment contributions from the intervening catchment areas and channel systems as well as storage and remobilization of sediment from the channel system and the impact of hydraulic works such as irrigation systems.The long term mean annual sediment load of the Mekong River at its mouth is estimated to be ca.145×106ta-1,which is lower than previously reported values and it seems likely that this will be reduced in the foreseeable future.  相似文献   

11.
Because of the high momentum of debris flow,when it confluences with the Main River,the water level in the upstream of the conjunction point will increase and a portion of sediment will deposit in the con- junction area.The discharge of downstream will be less then the summation discharge of main river and side channel,and the density of downstream will be difference from both the density of the fluid of main river and tributary.Based on momentum theory,and with the transport coefficient and deposit coefficient,the water ris- ing and sediment depositition characteristic within the conjunction area are studied.An equation that expressed by Froude number is deduced,which can reflect the hydraulic relation and confluence characteristic in the confluence area after the confluence of main river and side channel.The equation is verified with experiment data.The result shows that,if the parameters are used correctly,the calculation value is coincide with the one get from experiment.  相似文献   

12.
In consideration of the range of clay content of Chinese earth dams, the world’s highest prototype tests have been made to research on the effects of cohesive strength of filling of cohesive homogeneous earth dam on breach formation. Three breach mechanisms were presented, they were the source-tracing erosion of dam body with the form of "multilevel headcut", "two-helix flow" erosion of dam crest and collapse of breach sidewalls due to instability. It can be concluded that the cohesive strength of filling o...  相似文献   

13.
To observe cracks formation and propagation of materials,an in-situ tensile test system integrated with AFM and CCD imaging tools is developed in the present study.A left-right combination precision ball screw which can realize the equal motion of the sample’s two ends resulting in a constant position during imaging is employed.A linear encoder and a bridge circuit type strain gauge force sensor are used to measure the displacement and the force,respectively,which are utilized to calculate the strain and stress during the imaging.Based on this sytem,the mechanical properties of the sample and the deformation behavior of the materials can be obtained simultaneously.The magnetic tape is employed as the sample to be tensiled and observed by the developed system.AFM and CCD observation results verify that the in-situ tensile test system is feasible to observe the crack formation and propagation from micron to nano scale.This technique can also be used in other materials research fields such as failure of nano composites,local deformation of the sample surface under the tensile force and so on.  相似文献   

14.
The intensive extraction of ground water from aquifers near a river is an efficient way to exploit ground water resources. A lot of problems, however, have arisen because the mechanism of ground water flow in this way has not been clear. A sand-box model and a numerical model are respectively used to simulate the extraction of ground water near a partially penetrating river physically and theoretically. The results show that the ground water will lose saturated hydraulic connection with the river water as the pumping intensity increases. The broken point of hydraulic connection is located in the interior of aquifers rather than on the riverbed. After hydraulic disconnection occurs, two saturated zones, a suspended saturated zone linked with river and an unconfined aquifer, are formed.  相似文献   

15.
The slice-weighing method was used to investigate the unsaturated water transport of different cement pastes. The experimental results show that a sharp wetting front existed during water transport, the transport can be described by a non-linear diffusion equation, and transport coefficient of different materials exhibit various rules with water content of materials. The addition of fly-ash decreases transport coefficient of cement pastes in all the various water contents, even changes the transport mechanism.  相似文献   

16.
It is an effective way to use coal slime as fuel for circulating fluidized bed boilers, which will not only solve its pollution to the environment, but also turn waste to treasure. In order to provide basic technical information for transportation of coal slime from the coal preparation plant to the boiler, this paper experimentally studied the rheological behaviors of coal slime produced by filter-pressing. By using a rotational viscometer, the influences of water content, temperature, and shear time on the rheological behaviors of coal slime were investigated. Experimental results show that the coal slime will behave like Bingham plastics with low water content and like Bingham pseudo-plastics with 37.5% water content,while like pseudo-plastics with 40% water content. This indicates that the water content of coal slime must be controlled in consideration of both transportation resistance and combustion efficiency. Study results also show that, the apparent viscosity of coal slime at 5℃ is about 1.5–1.7 times of that at 40℃ for water contents 32%–37.5%, while the influence of temperature can be neglected when the water content is 40%. With increasing of water content, the influences of shear time on the apparent viscosity of coal slime becomes less. When the water content is more than 30%, the effect of shear time is negligible. It indicates that water content has the most important influence on the rheological behaviors of coal slime. There must be an optimal water content in considering conveying resistance and combustion efficiency. The environmental temperature must also be considered in coal slime transportation.  相似文献   

17.
In recent years, the ecological environment in the upper reaches of the Yellow River has been degraded due to natural and human factors. Environmental problems such as grassland degeneration, sandy desertification and water erosion have seriously affected regional economic sustainable development. The objective of this paper was to detect sandy desertification in the upper reaches of the Yellow River by means of remote sensing and GIS. The Gonghe Basin was chosen as the study site, which is one of the most seriously degraded regions in the area. Based on an analysis of the multi-temporal and multi-spectral Landsat TM data with GIS, sandy desertification processes were detected. The results show that sandy desertified land has increased and intensified seriously in the upper reaches of the Yellow River for the period from 1987 to 1996. There are two desertification processes at work in the study area: sand dune reactivation and development of badlands through wind erosion. Excessive human activities play an important role in the occurrence and development of desertification in this area. At present, acceleration of the desertification process is attributed to irrational human economic activities. Grasslands as well as the ecological environment of this area have been seriously degraded, which has affected the regional economic sustainable development and endangered the security of the Longyangxia reservoir. It is necessary and urgent to combat desertification and protect the environment. The results show that full use of remote sensing data with GIS in monitoring and assessing desertification is an effective measure of quantitative research.  相似文献   

18.
Formation and utilization of water resources of Tarim River   总被引:3,自引:0,他引:3  
The Tarim River is a typical inland river in arid area without runoff yield of itself, and water resources are all supplied by its headstreams. The method of time series analysis is applied to annual runoff series of three headstreams, namely the Aksu River, Yarkant River and Hotan River to analyze their dynamic variations. A model is established to estimate water consumption in the headstream areas. Quantitative results indicate that both total annual runoff of headstreams and water consumption in the headstream areas have an increasing trend. The dynamic trends of annual runoff of hydrologic stations along the mainstream of the Tarim River are also presented to estimate the intermittence drying-up time at each station. Water consumption model of the mainstream area is used to analyze the characteristics of water consumption in the upper and middle reaches. It is shown that water consumption in each river reach of the mainstream decreases with the decrement of inflow and increases with human activities.  相似文献   

19.
Fly ash used as the main raw materials,incorporated with sintering expansion additive and fluxing additive in different ratio,was sintered high-strength lightweight aggregates of fly ash (ceramsite) in the laboratory-controlled electric furnace.The results show that the optimal sintering system is the sintering temperature range of 1250 ℃ to 1280 ℃ and retaining time of 5 min-10 min.The bulk density,the apparent density and 24 h water absorption of ceramsites decrease with the increase of sintering additive and the decrease of the amount of fly ash.The addition of fluxing additive can significantly enhance the compressive strength of ceramsite pellets,reduce its water absorption at 24 h and improve pore-shape ofinner structure.The firing coefficient (Pk) changed within 7.8-8.1 of raw materials can prepare high strength and low water absorption ceramsites.Pk kept a good linear relationship with porosity and strength of ceramsite particles.  相似文献   

20.
The antineutrino detectors for the Daya Bay reactor neutrino experiment are liquid scintillator detectors designed to detect electron anti-neutrino via inverse beta interactions with high efficiency and low backgrounds.Since the antineutrino detector will be installed and immerged in water Cherenkov detector and will run for 3 to 5 years,water tightness is critical to the successful operation of the antineutrino detectors.A special seal technique was used for this purpose.Three leak checking methods have been employed to ensure the seal quality.This paper describes the sealing method and leakage testing results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号