首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transients and setpoint simulation/system-integrated modular reactor (TASS/SMR) code has been used to identify the safety margin of a 65-MWt advanced integral reactor and to evaluate its design performance. Although, the code has been verified by using simplified and analytical problems as well as a reliable system code, its validation has not been fully established. This paper deals with a validation of the TASS/SMR code by using two kinds of separate effect tests related to heat transfer at a helically coiled steam generator. The heat transfer experiments were performed by using a full-scale prototype of the steam generator cassette of the advanced integral reactor and a scaled-down steam generator cassette. Analytical results show that the TASS/SMR code predicts the thermal hydraulic parameters, including the system pressure and fluid temperature at the primary and secondary sides of the steam generator cassette, and the heat transfer rate through the steam generator cassette well. The validation results in this study show that the TASS/SMR code is applicable for heat transfer calculations related to the helically coiled steam generator of the advanced integral reactor.  相似文献   

2.
An advanced integral pressurized water reactor (PWR) of a small size (330 MWt) is being developed by the Korea Atomic Energy Research Institute (KAERI). The purposes of the reactor are a sea water desalination and an electricity generation. To enhance its safety, many advanced design concepts are introduced such as a passive residual removal system and a low power density core. For the safety validation of the designed reactor, a system analysis code named TASS/SMR, was developed. TASS/SMR code uses a one dimensional node/path modeling for the thermal hydraulic calculation and point kinetics for the core power calculation. The code also has specific models for the developed integral reactor, such as a helical tube heat transfer model and a passive residual heat transfer model. One of the important models for the safety or performance calculation is the core heat transfer model. The core heat transfer model of TASS/SMR was developed to meet the requirements of the 10 CFR 50 appendix K EM model as well as the realistic models. The developed model was validated with experimental data. The results show that the model predicts the heat transfer phenomena in the reactor core with a reasonable conservatism.  相似文献   

3.
SMART is an integral type reactor of 330 MW, which enhances its safety by adopting inherent safety design features. Thermal hydraulic characteristics of transients in heat removal by a secondary system for the SMART have been carried out by means of the TASS/SMR and MATRA codes. The primary, secondary, and passive residual heat removal systems RHRS of the SMART were modeled properly. Then, a set of transients for the whole system was investigated. The results of the analyses using the conservative initial and boundary conditions showed that the safety features of the SMART design carried out their functions well and there was a strong moderator temperature coefficient due to the soluble boron free reactor affected by the transient behavior. The natural circulation was well established in the primary and passive residual heat removal systems during the transients and was enough to ensure a stable plant shutdown condition after a reactor trip.  相似文献   

4.
An investigation of the thermal hydraulic characteristics and the natural circulation performance in the passive residual heat removal system (PRHRS) for an integral type reactor have been carried out using the VISTA facility and the calculated results using the MARS code, which is a best estimate system analysis code have been compared with the experimental results. The VISTA facility consists of the primary, secondary, and the PRHRS circuits, to simulate the SMART design verification program. The experimental results show that the fluid is well stabilized in the PRHRS loop and the PRHRS heat exchanger accomplishes well its functions in removing the transferred heat from the primary side in the steam generator as long as the heat exchanger is submerged in the water in the emergency cooldown tank (ECT). The decay heat and the sensible heat can be sufficiently removed from the primary loop with the operation of the PRHRS. The MARS code predicts reasonably well the characteristics of the natural circulation in the PRHRS. From the calculation results, most of the heat transferred from the primary system is removed at the PRHRS heat exchanger by a condensation heat transfer.  相似文献   

5.
A small- and medium-sized nuclear reactor (SMR) has drawn attention because it is used for multi-purpose applications and the SMR has the virtue of being safer than a large-sized nuclear reactor. According to this tendency, the Regional Energy Research Institute for Next Generation (RERI) has been designing a Regional Energy Reactor-10 MWth (REX-10). REX-10 is an integral type pressurized water reactor (PWR), and is designed to remove heat by natural circulation to improve safety. To investigate the natural circulation characteristics of REX-10, we designed a REX-10 Test Facility (RTF) using the scaling law and carried out experiments in two parameters: heater power and primary pressure. The experimental results have shown that the heater power is the most important parameter of the natural circulation behavior. On the other hand, the primary pressure does not show remarkable effect on natural circulation. In addition, MARS code simulation has been conducted to compare the experimental results and its results show good agreement with the experimental data. Finally, evaluation of the capability of natural circulation was conducted. The result of the evaluation shows that the RTF is sufficiently capable of removing the thermal power of this system.  相似文献   

6.
Advanced integral-type pressurized water reactor with a maximum thermal power of 65 MW is under development at the Korea Atomic Energy Research Institute (KAERI). This 65 MW integral reactor incorporates a number of innovative design features. In the case of a transient, the passive residual heat removal system (PRHRS) is designed to cool the reactor coolant system (RCS) from a normal operation condition to a hot shutdown condition by a natural circulation, and the shutdown cooling system (SCS) is designed to cool the primary system from a hot shutdown condition to a refueling condition by a forced circulation. A realistic calculation has been carried out by using the TASS/SMR code and a sensitivity analysis has been performed to evaluate a passive cooldown capability for various system conditions such as natural and forced circulation conditions for the reactor coolant system or the passive residual heat removal system, and number of active PRHRS trains. The reactor coolant system and the passive residual heat removal system adequately remove the core decay heat by a natural circulation and the 65 MW integral reactor can cool the coolant to the SCS entry condition in the primary system for all the possible operational conditions.  相似文献   

7.
非能动安全壳冷却系统(PCCS)是第3代先进压水堆核电厂重要的专设安全系统。本文提出一套采用分离式热管技术的PCCS,通过原理性试验和系统性热工水力分析程序研究系统启动和稳态运行的流动和传热特性,研究影响系统运行及热传输能力的关键因素,验证系统设计的可行性。研究结果表明,该系统的传热性能随安全壳的状态变化有极强的自适应能力,在事故工况下利用该系统作为非能动的安全壳热量移出措施是可行、有效的。程序分析结果与试验结果及国际上已有研究成果的对比分析表明,RELAP5程序对于该系统热工水力分析是适用的。蒸发段传热管内流型、传热模式、空泡份额等关键流动、传热参数的变化表明,系统初始充液率对系统传热性能有重要影响。较小的冷热芯位差即能提供足够的自然循环驱动力,冷热芯位差不是系统布置的主要制约因素。  相似文献   

8.
To identify a safety margin in the case of an inadvertent control rod withdrawal event of a 65-MWt advanced integral reactor, safety analysis has been carried out by using the Transients And Setpoint Simulation/System integrated Modular Reactor (TASS/SMR) code. The diverse initial conditions, various reactivity insertion rates into a core, different combinations of a reactivity feedback and three different speed modes of a main coolant pump (MCP) have been considered to identify the effect of each parameter on a critical heat flux ratio (CHFR) and the initial condition resulting in the worst consequences from the viewpoint of the minimum critical heat flux ratio. The analysis results show that the worst consequences occur when a reactivity of 17.61 pcm/s is inserted into a core at an initial condition of a 45% initial core power, high coolant temperature at the core inlet position, low system pressure and a thermal design flow. It is also assumed that the least negative fuel and moderator temperature coefficients are applied. The safety parameters such as the minimum critical heat flux ratio and the system pressure are maintained within the safety limits and the reactor is safely transferred to a safe condition by a functioning of the safety systems of the advanced integral reactor.  相似文献   

9.
KAERI has been operating an integral effect test facility, Advanced Thermal–Hydraulic Test Loop for Accident Simulation (ATLAS), for accident simulations of advanced pressurized water reactors. As an integral effect test database for major design basis accidents has been accumulated, a domestic standard problem (DSP) exercise using ATLAS was proposed in order to transfer the database to domestic nuclear industries and to contribute to improving the safety analysis technology for pressurized water reactors (PWRs). As the third DSP exercise, a double-ended guillotine break of the main steam-line at an 8% power without loss of off-site power was decided as a target scenario. Seventeen domestic organizations joined this DSP exercise. They include universities, government, and nuclear industries. The participants of DSP-03 were classified into three groups and each group has focused on the specific subject related to the enhancement of the code assessment; (1) scaling capability of the ATLAS test data by comparing with the code analysis for a prototype, (2) multi-dimensional thermal–hydraulic phenomena anticipated during the steam-line break transient, (3) effect of various models in the one-dimensional safety analysis codes.  相似文献   

10.
在考虑建设试验台架经济性的前提下,缩小比例的单项和整体效应试验台架对研究和开发大型先进压水堆核电站及其分析验证程序都具有重要意义。非能动安全壳冷却系统(PCS)壳外空气流道内的自然循环在安全壳非能动冷却性能中发挥着重要的作用。本文从自然循环的数学模型出发,推导出了单项和整体效应试验台架的比例设计方法。在给定壳内热流密度的条件下,通过PCCSAP-3D程序对CAP1400非能动安全壳的2/5比例单项效应试验理想比例台架(ISF)进行模拟。结果表明,本比例分析与设计方法以及在降低高度台架上模拟自然循环是可行的。  相似文献   

11.
Overpressure protection analysis of KAERI's advanced integral reactor, which has been developed to verify the performance of the System integrated Modular Advanced ReacTor (SMART), has been performed using the Transients And Setpoint Simulation/Small and Medium Reactor (TASS/SMR) code. In the analysis, the loss of feed-water and the regulating bank withdrawal events on behalf of the decrease in the heat removal by the secondary system and the reactivity and power distribution anomalies are selected as the initiating events for the analysis because the highest peak pressures of the primary system occur during these events. Conservative assumptions and the various initial/boundary conditions have been applied to the overpressure protection analysis for the advanced integral reactor. Although the pressurization of the primary system occurs due to an unbalance between the power generation in the core and the heat removal through the steam generator, the peak pressures in the cases of using the loss of feed-water and the regulating bank withdrawal event as an initiating event are well below the acceptance criteria of 18.7 MPa, due to the reactor protection system and three pilot operated safety relief valves installed in the advanced integral reactor.  相似文献   

12.
高温气冷堆蒸汽发生器具有一次侧氦气工质、二次侧直流、螺旋管结构、工作温度高等特点,其热工水力特性与传统压水堆自然循环蒸汽发生器存在很大区别。针对高温气冷堆蒸汽发生器的特点,对其基础热工水力及特有热工水力学问题进行了阐述,主要包括螺旋管内单相及两相流阻及换热计算、横掠螺旋管束流阻及换热计算、温度均匀性及两相流不稳定性等。同时介绍了清华大学核能与新能源技术研究院针对高温气冷堆蒸汽发生器热工设计、温度均匀性及两相流不稳定性等热工水力学问题所开发的一维稳态程序、一维瞬态程序、二维分析程序和方法,并对分析结果和结论进行了讨论。相关研究方法、程序和结论对其他相似参数螺旋管和直管式直流蒸汽发生器具有参考和借鉴意义。  相似文献   

13.
A scaling methodology for a small-scale integral test facility was investigated in order to analyze thermal-hydraulic phenomena during a DVI (direct vessel injection) line SBLOCA (small break loss-of-coolant accident) in an APR1400 (advanced power reactor 1400 MWe) pressurized water reactor. The test facility SNUF (Seoul National University Facility) was utilized as a reduced-height and reduced-pressure integral test loop. To determine suitable test conditions for simulating the prototype in the SNUF experiment, the energy scaling methodology was propose to scale the coolant mass inventory and the thermal power for a reduced-pressure condition. The energy scaling methodology was validated with a system code (MARS) analysis for an ideally scaled-down SNUF model and that predicted a reasonable transient of pressure and coolant inventory when compared to the prototype model. For the actually constructed SNUF, the effect of scaling distortions in the test facility's thermal power and the loop geometry was analytically investigated. To overcome the limitation of the thermal power supply in the facility, the convective heat transfer between primary and secondary systems at the steam generator U-tubes was excluded and a modified power curve was applied for simulating the core decay heat. From the code analysis results for the actual SNUF model, the application of the modified power curve did not affect the major events occurring during the transient condition. The results revealed that the scaling distortion in the actual SNUF geometry also did not strongly disturb significant thermal-hydraulic phenomena such as the downcomer seal clearing. Thus, with an adoption of the energy scaling methodology, the thermal-hydraulic phenomena observed in the SNUF experiment can be properly utilized in a safety analysis for a DVI line break SBLOCA in the APR1400.  相似文献   

14.
There are many differences between the flow and heat transfer characteristics of nuclear reactors under ocean and land-based conditions for the effects of ocean waves. In this paper, thermal hydraulic characteristics of a passive residual heat removal system (PRHRS) for an integrated pressurized water reactor (IPWR) in ocean environment were investigated theoretically. A series of reasonable theoretical models for a PRHRS in an IPWR were established. These models mainly include the core, once-through steam generator, nitrogen pressurizer, main coolant pump, flow and heat transfer and ocean motion models. The flow and heat transfer models are suitable for the core with plate-type fuel element and the once-through steam generator with annular channel, respectively. A transient analysis code in FORTRAN 90 format has been developed to analyze the thermal–hydraulic characteristics of the PRHRS under ocean conditions. The code was implemented to analyze the effects of different ocean motions on the transient thermal-hydraulic characteristics of PRHRS. It is found that the oscillating amplitudes and periods of the system parameters are determined by those of the ocean motions. The effect of rolling motion is more obvious than that of pitching motion when the amplitudes and periods of rolling and pitching motions are the same. The obtained analysis results are significant to the improvement design of the PRHRS and the safety operation of the IPWR.  相似文献   

15.
通过搭建试验装置,针对二次侧非能动余热排出系统(ASP),开展了试验研究。本文对ASP整体性能响应和稳态特性试验研究的试验装置、试验工况、试验结果进行了介绍。试验结果表明,在模拟事故工况下,ASP可稳定建立自然循环,并将回路热量导出,保证系统整体安全性;稳态特性试验中,回路压力为8 MPa时,可导出设计热量,且随压力的升高,导热能力增大,水箱温度对于换热影响较小。  相似文献   

16.
Experimental thermal hydraulic research has been conducted at Oregon State University for the purpose of assessing the performance of a new reactor design concept, the multi-application small light water reactor (MASLWR). The MASLWR is a pressurized light water reactor design with a net output of 35 MWe that uses natural circulation in both normal and transient operation. Due to its small size, portability and modularity, the MASLWR design is well suited to help fill the potential need for grid appropriate reactor designs for smaller electricity grids as may be found in developing or remote regions. The purpose of the OSU MASLWR test facility is to assess the operation of the MASLWR under normal full operating pressure and full temperature conditions and to assess the passive safety systems under transient conditions. The data generated by the testing program will be used to assess computer code calculations and to provide a better understanding of the thermal-hydraulic phenomena in the design of the MASLWR NSSS. During this testing program, four tests were conducted at the OSU MASLWR test facility. These tests included one design basis accident and one beyond design basis accident. During the performance of these tests, plant operations to include start up, normal operation and shut down evolutions were demonstrated successfully.  相似文献   

17.
铅基快堆自然循环实验台架比例分析方法研究   总被引:2,自引:2,他引:0       下载免费PDF全文
铅基快堆具有良好的自然循环能力,研究其自然循环特性对提高反应堆固有安全性具有重要价值,而比例分析方法是建立合理可行铅基快堆自然循环实验台架的理论基础。本文通过无量纲化典型自然循环铅基快堆一回路系统的流体控制方程,确定主要的无量纲相似准则群;基于所构建的无量纲相似准则数对小型自然循环铅基快堆SNCLFR-10开展比例分析,获得双环路单相自然循环实验台架的几何和热工水力设计参数;对比分析额定工况下SNCLFR-10和缩比实验台架的关键热工水力参数,开展铅基快堆自然循环实验台架比例分析方法验证。研究结果表明,SNCLFR-10和缩比台架的关键热工参数模拟结果比值与理论推导比例关系吻合良好,建立的铅基快堆自然循环实验台架比例分析方法合理可行。   相似文献   

18.
Lead-based fast reactors have good natural circulation capabilities, and its natural circulation characteristics is of great value to improve the inherent safety of the reactor, and the scaling analysis method is the theoretical basis for establishing a reasonable and feasible lead-based fast reactor natural circulation test facility. In this paper, the main similarity groups could be determined by using dimensionless fluid governing equations of typical natural circulation lead-based fast reactor primary cooling system. Based on the constructed dimensionless similarity groups, the scaling analysis of small natural circulation lead-based fast reactor named SNCLFR-10 was carried out to obtain the geometric and thermal hydraulic design parameters of the dual-loop single-phase natural circulation experimental facility. The scaling method of the lead-based fast reactor natural circulation test facility was verified by comparing and analyzing the key thermal and hydraulic parameters of SNCLFR-10 and the scaled-down test facility under rated conditions. The research results show that the key thermal-hydraulic parameter ratios of SNCLFR-10 and the scaled-down facility are in good agreement with the theoretically deduced ratio, and the established lead-based fast reactor natural circulation experimental facility scaling analysis method is reasonable and feasible.  相似文献   

19.
堆芯是核动力系统的核心部件,其完整性是反应堆安全运行的重要前提。传统核反应堆堆芯热工水力分析方法无法满足未来先进核动力系统的高精度模拟需求。本文依托开源CFD平台OpenFOAM,针对压水堆堆芯棒束结构特点建立了冷却剂流动换热模型、燃料棒导热模型和耦合换热模型,开发了一套基于有限体积法的压水堆全堆芯通道级热工水力特性分析程序CorTAF。选取GE3×3、Weiss和PNL2×6燃料组件流动换热实验开展模型验证,计算结果与实验数据基本符合,表明该程序适用于棒束燃料组件内冷却剂流动换热特性预测。本工作对压水堆堆芯安全分析工具开发具有参考和借鉴意义。  相似文献   

20.
大型热工流体整体效应系统实验(CIET)台架是为模拟氟盐冷却高温堆(FHR)热工水力响应而设计的实验回路,采用DOWTHERM A模拟氟盐作为冷却剂。通过在RELAP5/MOD3.2程序中加入DOWTHERM A物性参数以及传热关系式,计算FHR实验回路CIET在两种工况下的热工水力行为,并与实验结果进行对比,计算工况包括强迫循环条件与自然循环条件。计算结果表明:在强迫循环条件下,堆芯热量主要靠盘管式空气换热器(CTAH)排出,堆芯进出口冷却剂温度及CTAH出口冷却剂温度与实验值符合良好,CTAH进口冷却剂温度与实验值有些微偏差;在自然循环工况中,堆芯热量主要通过DHX与堆芯辅助冷却系统(DRACS)回路的换热带走,DHX及DRACS的流量与实验值接近,相对误差在10%左右,验证了修正后RELAP5/MOD3.2的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号