共查询到20条相似文献,搜索用时 0 毫秒
1.
V. Radu E. Paffumi N. Taylor K.-F. Nilsson 《International Journal of Pressure Vessels and Piping》2009
The assessment of fatigue crack growth due to turbulent mixing of hot and cold coolants presents significant challenges, in particular to determine the thermal loading spectrum and the associated crack growth. The sinusoidal method is a simplified approach for addressing this problem, in which the entire spectrum is replaced by a sine-wave variation of the temperature at the inner pipe surface. The loading frequency is taken as that which gives the shortest crack initiation and growth life. Such estimates are intended to be conservative but not un-realistic. Several practical issues which arise with this approach have been studied using newly-developed analytical solutions for the temperature and stress fields in hollow cylinders, in particular the assumptions made concerning the crack orientation, dimensions and aspect ratio. The application of the proposed method is illustrated for the pipe geometry and loadings conditions reported for the Civaux 1 case where through wall thermal fatigue cracks developed in a short time, but the problem is relevant also for fast reactor components. 相似文献
2.
Rahul Mittal P.K. Singh D.M. Pukazhendi V. Bhasin K.K. Vaze A.K. Ghosh 《International Journal of Pressure Vessels and Piping》2011
A systematic experimental and analytical study has been carried out to investigate the effect of vibration loading on the fatigue life of the piping components. Three Point bend (TPB) specimens machined from the actual pipe have been used for the evaluation of Paris constants by carrying out the experiments under vibration + cyclic and cyclic loading as per the ASTM Standard E647. These constants have been used for the prediction of the fatigue life of the pipe having part-through notch of a/t = 0.25 and aspect ratio (2c/a) of 10. Predicted results have shown the reduction in fatigue life of the notched pipe subjected to vibration + cyclic loading by 50% compared to that of cyclic loading. Predicted results have been validated by carrying out the full-scale pipe (with part-through notch) tests. Notched pipes were subjected to loading conditions such that the initial stress-intensity factor remains same as that of TPB specimen. Experimental results of the full-scale pipe tests under vibration + cyclic loading has shown the reduction in fatigue life by 70% compared to that of cyclic loading. Fractographic examination of the fracture surface of the tested specimens subjected to vibration + cyclic loading have shown higher presence of brittle phases such as martensite (in the form of isolated planar facets) and secondary micro cracks. This could be the reason for the reduction of fatigue life in pipe subjected to vibration + cyclic loading. 相似文献
3.
Takumi Tokiyoshi Fumiko Kawashima Toshihide Igari Hironori Kino 《International Journal of Pressure Vessels and Piping》2001,78(11-12)
Superheater outlet headers of boilers are well known to be subjected to the cycling of high pressure and high thermal stress during plant operations. Thermal stresses during cyclic operation are generally severest on the inside surface of the ligaments between the stub-tube holes, where many examples of ligament cracking due to thermal fatigue have been found recently. A method to predict the crack propagation life of the ligaments of boiler headers under thermal fatigue has been required. Firstly in this paper, to model the crack propagation behavior of the ligament regions of boiler headers, a perforated plate of normalized and tempered 2 1/4Cr–1Mo steel was examined under out-of-phase thermal fatigue at a maximum temperature of 600°C in the air. Inelastic analysis of the perforated plate under thermal fatigue was carried out, and the nonlinear fracture mechanics parameters such as the J and C* integral were obtained by the line integral for observed cracks. A simplified method was proposed for predicting these parameters under displacement-controlled conditions such as thermal fatigue. In this method, the change of the macroscopic stress–strain relation of the perforated plate with propagating cracks was combined with the reference stress concept under displacement-controlled conditions. The predicted fracture mechanics parameters from this method coincided well with those from the inelastic analysis. The prediction of the crack propagation life on the basis of the proposed method provided a good correspondence with the test results of the perforated plate under thermal fatigue. 相似文献
4.
Koki Tazoe Shigeru Hamada Hiroshi Noguchi 《International Journal of Hydrogen Energy》2017,42(18):13158-13170
In this study, stress intensity factor range (ΔK) decreasing tests were conducted and the in-situ observations were used to investigate the fatigue crack growth behavior of JIS SCM440 steel near the fatigue threshold in a 9-MPa hydrogen gas environment. The fatigue crack growth rate reflected the threshold behavior of the material, although the crack propagation knee point immediately before the threshold stress intensity factor range (ΔKth) could not be distinctly identified. The fatigue crack was also observed to exhibit uneven propagation immediately before ΔKth. In contrast, the knee points in a helium gas environment and air were very distinct. Fractographic analysis further revealed the existence of intergranular facets, which were observed immediately before ΔKth in the hydrogen gas environment. Conversely, no facet was observed immediately before ΔKth in the helium gas environment and air. The formation of the facets was considered to be one of the causes of the uneven crack propagation immediately before ΔKth in the hydrogen gas environment. 相似文献
5.
Fatigue initiation resistance has been determined on API 5L X52 gas pipe steel. Tests have been performed on Roman Tile (RT) specimen and fatigue initiation was detected by acoustic emission. A comparison between specimens electrolytically charged with hydrogen and specimens without hydrogen absorption were made and it has been noted that fatigue initiation time is reduced of about 3 times when hydrogen embrittlement occurs. It has been proposed to use the concept of Notch Stress Intensity Factor as parameter to describe the fatigue initiation process. Due to the fact that hydrogen is localised in area with high hydrostatic pressure, definitions of local effective stress and distance have been modified when hydrogen is absorbed. This modification can be explained by existence of a ductile–brittle transition with hydrogen concentration. The fatigue initiation resistance curve allows that to determine a threshold for large number of cycles of fatigue non initiation. This parameter introduced in a Failure Assessment Diagram (FAD) provides supplementary information about defect nocivity in gas pipes: a non-critical defect can be detected as dormant or not dormant defect i.e., as non propagating defect. 相似文献
6.
Tests have been performed on Type 316H stainless-steel compact tension specimens from four ex-service components and creep crack growth rates from these tests have been characterised using C*. Several modifications to standard creep crack growth testing and analysis methods have been proposed, including an improved approach for determining whether widespread creep conditions have been developed in the specimens. The observed behaviour has then been compared with existing creep crack growth rate data for this material. A change in cracking mode from ductile to brittle intergranular fracture was observed with increasing test duration. In addition, creep crack growth rates for several of the longest-term tests lie above an extrapolation of existing data from shorter-term tests. Models based on ductility exhaustion have been used to derive new equations for predicting creep crack growth rates in Type 316H steel at temperatures of 525 and 550 °C. 相似文献
7.
Creep and creep-fatigue crack growth in pre-cracked plates of 316L(N) austenitic stainless steel, containing a semi-elliptical surface defect and tested at 650 °C under combined axial and bending loading, are investigated. The results have been interpreted in terms of the creep fracture mechanics parameter C∗ and compared with data obtained on standard compact tension (CT) specimens of the same material and batch. In making the assessments, the reference stress method has been used to determine C∗. Several formulae exist for calculating the reference stress depending on whether it is based on a ‘global’ or a ‘local’ collapse mechanism and the assessment procedure adopted. When using this approach, it has been found that the most satisfactory comparison of crack growth rates with standard CT specimen data is obtained when the ‘global’ reference stress solution is used in conjunction with mean uniaxial creep properties. It has been found that the main effect of changing the fatigue cycle range from 0.1 to −1.0 is to cause an acceleration in the early stage of cracking. 相似文献
8.
Shu Huang Guang Yuan Jie Sheng Wensheng Tan Emmanuel Agyenim-Boateng Jianzhong Zhou Huafeng Guo 《International Journal of Hydrogen Energy》2018,43(24):11263-11274
Microstructural response of AISI 316L stainless steel to laser peening (LP) was examined by means of optical microscopy (OM) and transmission electron microscopy (TEM) in order to analyze the effects of LP on hydrogen-induced cracking (HIC) resistance. Depth profiles of near-surface microhardness and surface compressive residual stress (CRS) of LP treated specimens were presented respectively. Slow strain rate tensile tests were performed on the hydrogen-charged samples and their corresponding stress-strain curves as well as fracture morphologies were finally investigated in detail. The results demonstrated that LP induced a grain refinement effect on the treated surface while a maximum refining rate of 56.18% was achieved at the laser power density of 10 GW/cm2. The near-surface microhardness also exhibited an attenuation trend with the increasing depth. The surface CRS positively correlated with power density before it reached a threshold value. A special U-shaped dislocation tangle band was observed in the LP treated specimen which served as hydrogen trapping sites. The LP treated samples exhibited better toughness after hydrogen charging from both macro mechanical properties and micro fracture morphologies. LP-induced grain refinement and CRS are believed to be the main contributing factors towards inhibiting the diffusion of hydrogen atoms which ultimately leads to the reduction of the hydrogen embrittlement sensitivity of AISI 316L stainless steel. 相似文献
9.
Teng An Huangtao Peng Pengpeng Bai Shuqi Zheng Xiangli Wen Lin Zhang 《International Journal of Hydrogen Energy》2017,42(23):15669-15678
The low-cycle fatigue and fatigue crack growth (FCG) properties of X80 pipeline steel in hydrogen atmosphere were determined to investigate the variation of hydrogen pressure and its influence on fatigue life. The test environment was switched to a hydrogen atmosphere after 1000, 3000, or 5000 cycles of pre-fatigue testing in a nitrogen atmosphere. Notch tensile tests were conducted in nitrogen and hydrogen atmospheres after the specimens were pre-fatigued for 3000 or 5000 cycles. The results showed that the cycles to failure of X80 decreased exponentially with increasing hydrogen pressure. When the displacement amplitude (DA) values remained steady (below 3000 cycles), the X80 steels showed no noticeable deterioration in the fatigue properties with or without hydrogen. When the DA values increased (above 5000 cycles), cracks propagated slowly and fatigue properties were strongly reduced in the hydrogen atmosphere, but not in nitrogen. Hydrogen-accelerated crack growth dominates the reduction of fatigue life below 0.6 MPa of hydrogen pressure. Hydrogen-accelerated crack initiation plays a more important role than FCG in the reduction of fatigue life with increasing hydrogen pressure. 相似文献
10.
《Energy Materials: Materials Science and Engineering for Energy Systems》2013,8(4):1384-1392
AbstractThe low cycle fatigue behaviour of 316(N) weld metals and 316L(N)/316(N) weld joints have been investigated in the temperature range of 300–873 K, at a strain amplitude of ±0·6% and a strain rate 3 6 10–3 s–1, to study the influence of dynamic strain aging (DSA). The 316(N) weld metal exhibited better fatigue life than the weld joint, though the weld metal has shown higher cyclic stress response and higher plastic strain accumulation than the weld joint. Significant features observed in the temperature regime of 300–873 K include the maximum in fatigue life at 573 K and DSA in the range of 673–873 K. Occurrence of DSA has been manifested through drastic reduction in fatigue life in the range of 673–873 K, associated with anomalous stress response. Dominant DSA effects have been observed at about 773 K in the weld joint and at 823 K in the weld metal. However, the effect of DSA is found to be nominal beyond 823 K where the reduction in fatigue life is attributed to the combined effects of oxidation and DSA. Secondary crack density measurements (in the range of 300–873 K) in the weld joint specimens revealed the severity of the heat affected zone (HAZ) in inducing fatigue damage. Parameters have been identified to determine the temperature corresponding to dominant DSA effects. 相似文献
11.
J. Ooro 《International Journal of Pressure Vessels and Piping》2009,86(10):656-660
The corrosion fatigue crack-growth behaviour of AISI 317LN stainless steel was evaluated in air and in 85% phosphoric acid at 20 °C. Austenitic stainless steels with high molybdenum content have high corrosion resistance and good mechanical properties. However, this increase in the molybdenum content and other elements such as nitrogen can also modify the microstructure. This leads to a modification of its mechanical properties. The corrosion fatigue crack-growth rate was higher in phosphoric acid immersion than in air. Austenitic stainless steels with a fully austenitic microstructure were more ductile, tough, and behave better against corrosion fatigue. The higher resistance to corrosion fatigue was directly associated to its higher resistance to corrosion. 相似文献
12.
Donghai Xu Zhijiang Ma Shuwei Guo Xingying Tang Yang Guo Shuzhong Wang 《International Journal of Hydrogen Energy》2017,42(31):19819-19828
Systematical corrosion tests of austenitic stainless steel 316L exposed to sewage sludge SCWO (supercritical water oxidation) were conducted in a batch stirred reactor with hydrogen peroxide as oxidant. Experiment conditions such as temperature, oxidation coefficient, pH value, corrosion medium, were chosen mainly keeping in mind the place and environment of reactions (i.e. surrounding transpiring wall). The exposed samples were ultimately analyzed by weight measurement, scanning electron microscopy in conjunction with energy dispersive spectroscopy, and X-ray diffraction analysis. The results show that severe pitting corrosion occurred as the sample was exposed to complicated environments, and different oxides including Fe3O4, FeCr2O4 and MoO3 were found on the sample surface. The corrosion rate at all test conditions (360–450 °C pH = 5.2–10.05, oxidation coefficient of 0–2.0, sewage sludge or its SCWO reactor effluent) was in the range of 0.12–0.66 mm/y, and it increased as temperature and OC increased at supercritical conditions. Moreover, potential corrosion mechanism of 316L in sewage sludge SCWO is proposed, and influences of operating parameters on 316L corrosion properties are summarized. 316L and reactor effluent could be considered as transpiring wall material and transpiring water in sewage sludge SCWO with transpiring wall reactor, respectively. 相似文献
13.
Haijun Yu Lijun Yang Lei Zhu Xuyu Jian Zhong Wang Lijun Jiang 《Journal of power sources》2009,191(2):495-500
In order to reduce the cost, volume and weight of the bipolar plates used in the proton exchange membrane fuel cells (PEMFC), more attention is being paid to metallic materials, among which 316L stainless steel (SS316L) is quite attractive. In this study, metallic Ta is deposited on SS316L using physical vapor deposition (PVD) to enhance the corrosion resistance of the bipolar plates. Simulative working environment of PEMFC is applied for testing the corrosion property of uncoated and Ta-coated SS316L. X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods (potentiodynamic and potentiostatic polarization) are also used for analyzing characteristics of uncoated and Ta-coated SS316L. Results show that, Ta-coated SS316L has significantly better anticorrosion property than that of uncoated SS316L, with corrosion current densities of uncoated SS316L being 44.61 μA cm−2 versus 9.25 μA cm−2 for Ta-coated SS316L, a decrease of about 5 times. Moreover, corrosion current densities of Ta-coated SS316L in both simulative anode (purged with H2) and cathode (purged with air) conditions are smaller than those of uncoated SS316L. 相似文献
14.
A nickel-rich layer about 100 μm in thickness with improved conductivity was formed on the surface of austenitic stainless steel 316L (SS316L) by ion implantation. The effect of ion implantation on the corrosion behavior of SS316L was investigated in 0.5 M H2SO4 with 2 ppm HF solution at 80 °C by potentiodynamic test. In order to investigate the chemical stability of the ion implanted SS316L, the potentiostatic test was conducted in an accelerated cathode environment and the solutions after the potentiostatic test were analyzed by inductively coupled plasma atomic emission spectrometer (ICP-AES). The results of potentiodynamic test show that the corrosion potential of SS316L is shifted toward the positive direction from −0.3 V versus SCE to −0.05 V versus SCE in anode environment and the passivation current density at 0.6 V is reduced from 11.26 to 7.00 μA cm−2 in the cathode environment with an ion implantation dose of 3 × 1017 ions cm−2. The potentiostatic test results indicate that the nickel implanted SS316L has higher chemical stability in the accelerated cathode environment than the bare SS316L, due to the increased amount of metallic Ni in the passive layer. The ICP results are in agreement with the electrochemical test results that the bare SS316L has the highest dissolution rate in both cathode and anode environments and the Ni implantation markedly reduces the dissolution rate. A significant improvement of interfacial contact resistance (ICR) is achieved for the SS316L implanted with nickel as compared to the bare SS316L, which is attributed to the reduction in passive layer thickness caused by the nickel implantation. The ICR values for implanted specimens increase with increasing dose. 相似文献
15.
Nada F. Atta A.M. Fekry Hamdi M. Hassaneen 《International Journal of Hydrogen Energy》2011,36(11):6462-6471
Electrochemical corrosion behavior and hydrogen evolution reaction of 316L stainless steel has been investigated, in 0.5 M sulfuric acid solution containing four novel organic inhibitors as derivatives from one family, using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) measurements and surface examination via scanning electron microscope (SEM) technique. The effect of corrosion inhibitors on the hydrogen evolution reaction was related to the chemical composition, concentration and structure of the inhibitor. The inhibition efficiency, for active centers of the four used compounds, was found to increase in the order: -Cl < -Br < -CH3 < -OCH3. The corrosion rate and hydrogen evolution using the compound with methoxy group as a novel compound was found to increase with either increasing temperature or decreasing its concentration as observed by polarization technique and confirmed by EIS measurements. The compound with methoxy group (newly synthesized) has very good inhibition efficiency (IE) in 0.5 M sulfuric acid (98.3% for 1.0 mM concentration). EIS results were confirmed by surface examination. Also, antibacterial activity of these organic inhibitors was studied. The results showed that the highest inhibition efficiency was observed for the compound that posses the highest antibacterial activity. 相似文献
16.
The problem of a crack in a piezoelectric material under electromechanical loading is considered. The exact solution, obtained in this work, includes the unknown a priori normal component of the electric displacement inside the crack. Several different physical assumptions associated with limited electric permeability of the crack are utilized to determine those unknown electric fluxes through the crack boundaries. Analytical formulae for the stress and electric intensity factors are derived. The effects of electric boundary conditions (limited permeability) at the crack surface on the basic parameters of fracture mechanics are analyzed and some features of the solution are discussed. If the permeability of the medium inside the crack tends to zero or is very large the extreme results i.e. impermeable or permeable crack solution are obtained. 相似文献
17.
Zhitao Wu Kaiyu Zhang Yuanjian Hong Chengshuang Zhou Jinyang Zheng Lin Zhang 《International Journal of Hydrogen Energy》2021,46(23):12348-12360
The fatigue crack growth rate of warm-rolled AISI 316 austenitic stainless steel was investigated by controlling rolling strain and temperature in argon and hydrogen gas atmospheres. The fatigue crack growth rates of warm-rolled 316 specimens tested in hydrogen decreased with increasing rolling temperature, especially 400 °C. By controlling the deformation temperature and strain, the influences of microstructure (including dislocation structure, deformation twins and α′ martensite) and its evolution on hydrogen-induced degradation of mechanical properties were separately discussed. Deformation twins deceased and dislocations became more uniform with the increase in rolling temperature, inhibiting the formation of dynamic α′ martensite during the crack propagation. In the cold-rolled 316 specimens, deformation twins accelerated hydrogen-induced crack growth due to the α′ martensitic transformation at the crack tip. In the warm-rolled specimens, the formation of α′ martensite around the crack tip was completely inhibited, which greatly reduced the fatigue crack growth rate in hydrogen atmosphere. 相似文献
18.
In this paper we demonstrate the suppression of hydrogen-assisted fatigue crack growth in type 316L austenitic stainless steel by cavitation peening employing a cavitating jet in air. Plate bending fatigue tests on pre-cracked samples were conducted after cathodic hydrogen charging with and without cavitation peening. Without cavitation peening, the hydrogen effect on the crack growth behavior at low applied stress was clearly demonstrated compared with high applied stress in the fatigue test. The coalescence of sub-cracks and the main crack propagating from the pre-crack were observed in the hydrogen charged specimen. This phenomenon significantly accelerated the crack growth. This unexpected fracture was suppressed by introducing compressive residual stress by cavitation peening regardless of the length of processing time. In addition, lengthier treatment reduced the crack growth rate of the hydrogen charged specimen by 75% compared to an untreated one. 相似文献
19.
《International Journal of Hydrogen Energy》2023,48(23):8526-8548
316L austenitic stainless steel (ASS) is the standard reference material in fabricating pressurized hydrogen storage tanks due to its low hydrogen embrittlement sensitivity and excellent corrosion resistance. Ballistic performance of such tanks is of course a concern of safety. In this study, ballistic impact behavior of 316L ASS was studied against blunt and ogival nose shaped projectiles within impact velocity range of 160.3–324.1 m/s. Ballistic impact behavior of 316L ASS is sensitive to nose shapes of projectiles. For targets against blunt projectile, shear plugging with ejected plugs is observed, and target deflection is limited; for targets against ogival projectile, failure mode is ductile hole enlargement, small bulge and some fragments are observed on front and rear sides of targets, respectively. Ballistic limit velocities (BLVs) for two projectiles are respectively 180.9 m/s and 333.5 m/s, indicating better energy absorption against ogival projectile. Numerical simulations of ballistic impact tests were carried out using either the Lode independent MJC or the Lode dependent modified Mohr-Coulomb (MMC) fracture criterion. Numerical prediction by the latter is more accurate than the former as ballistic impact tests are dominated by stress state where Lode parameter is strong enough to cause a big difference between MMC and MJC criteria, and fracture behavior is accurately predicted by the latter but overestimated by the former. 相似文献
20.
Y.S. Chang J.U. Jeong Y.J. Kim S.S. Hwang H.P. Kim 《International Journal of Pressure Vessels and Piping》2010
During the last couple of decades, lots of researches on structural integrity assessment and leak rate estimation have been carried out to prevent unanticipated catastrophic failures of pressure retaining nuclear components. However, from the standpoint of leakage integrity, there are still some arguments for predicting the leak rate of cracked components due primarily to uncertainties attached to various parameters in flow models. The purpose of present work is to suggest a leak rate estimation method for thin tubes with artificial cracks. In this context, 23 leak rate tests are carried out for laboratory generated stress corrosion cracked tube specimens subjected to internal pressure. Engineering equations to calculate crack opening displacements are developed from detailed three-dimensional elastic-plastic finite element analyses and then a simplified practical model is proposed based on the equations as well as test data. Verification of the proposed method is done through comparing leak rates and it will enable more reliable design and/or operation of thin tubes. 相似文献