首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A prothrombin activator from the venom of Tropidechis carinatus has been isolated by means of gel filtration and benzamidine-based affinity chromatography, a novel use of the latter technique. Two bands possessing prothrombinase activity were obtained from the affinity chromatography procedure and designated A1 and A2. The bulk of the enzyme activity was recovered in peak A2 which represented 27-31% of the starting activity and a 14-16-fold purification. The venom contained, in total, around 5% by weight of the two isoforms of the prothrombin activator. The two fractions were electrophoretically similar on polyacrylamide electrophoresis, migrating with a mol. wt of 64,500 under native conditions and as a single band of 41,500 under reducing conditions. The prothrombinase was dependent on factor Va, phospholipid and calcium ions for its activity and is, thus, a member of the type II class of prothrombinases requiring such co-factors. The enzyme did not possess any phospholipase activity nor did it cleave the substrates N-alpha-benzoyl-L-arginine-p-nitroanilide (BAPNA), N-benzoyl-L-tyrosine ethyl ester (BTEE), azocollagen or azocasein, indicating a lack of amidolytic, esterolytic and broad-spectrum protease activity.  相似文献   

2.
A color-variant strain of Aureobasidium pullulans (NRRL Y-12974) produced alpha-L-arabinofuranosidase (alpha-L-AFase) when grown in liquid culture on oat spelt xylan. An extracellular alpha-L-AFase was purified 215-fold to homogeneity from the culture supernatant by ammonium sulfate treatment, DEAE Bio-Gel A agarose column chromatography, gel filtration on a Bio-Gel A-0.5m column, arabinan-Sepharose 6B affinity chromatography, and SP-Sephadex C-50 column chromatography. The purified enzyme had a native molecular weight of 210,000 and was composed of two equal subunits. It had a half-life of 8 h at 75 degrees C, displayed optimal activity at 75 degrees C and pH 4.0 to 4.5, and had a specific activity of 21.48 mumol min-1. mg-1 of protein against p-nitrophenyl-alpha-L-arabinofuranoside (pNP alpha AF). The purified alpha-L-AFase readily hydrolyzed arabinan and debranched arabinan and released arabinose from arabinoxylans but was inactive against arabinogalactan. The K(m) values of the enzyme for the hydrolysis of pNP alpha AF, arabinan, and debranched arabinan at 75 degrees C and pH 4.5 were 0.26 mM, 2.14 mg/ml, and 3.25 mg/ml, respectively. The alpha-L-AFase activity was not inhibited at all by L-arabinose (1.2 M). The enzyme did not require a metal ion for activity, and its activity was not affected by p-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM).  相似文献   

3.
The South American opossum Didelphis marsupialis is known to be highly resistant to snake envenomation. In this paper it is shown that the opossum serum inhibits haemorrhage induced by both Crotalinae and Viperinae venoms. Tested against Bothrops jararaca (jararaca) venom, the antibothropic complex (ABC) isolated from the opossum serum was at least six times more antihaemorrhagic than the commercial antivenom. ABC showed no proteolytic activity by itself and was not hydrolysed by the venom. It inhibited the hydrolysis of casein by B. jararaca venom, but did not inhibit its hydrolytic activities upon N alpha-benzoyl-L-arginine ethyl ester (BAEE) and N alpha-benzoyl-DL-arginine p-nitroanilide (BAPNA). The inhibitor did not interfere with trypsin and bacterial collagenase activities on BAPNA and N-(3-[2-furyl]acryloyl)-Leu-Gly-Pro-Ala (FALGPA), respectively. It reduced chymotrypsin hydrolysis of N-acetyl-L-tyrosine ethyl ester (ATEE) because ABC is also a substrate for this enzyme. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, B. jararaca venom preferentially degraded fibrinogen A alpha-chain and fibrin alpha-chain. Tested on extracellular matrix proteins, the venom hydrolysed collagen IV, gelatins I and V, laminin and fibronectin, besides depolimerizing collagen I alpha-chain dimers. Fibrillar collagen V was not digested. These hydrolyses were inhibited by ABC and by EDTA. Our results show that the antibothropic complex is a venom metalloproteinase inhibitor, which could, at least partially, account for its antihaemorrhagic activity. Electrophoretic evidence indicated non-covalent complex formation between the antihaemorrhagic factor and component(s) of B. jararaca venom.  相似文献   

4.
Phosphatidyl inositol-phospholipase C (PI-PLC) in squid retina was studied by immunoblotting and its activities were determined using [3H]phosphatidyl inositol bisphosphate ([3H]PIP2) as substrate. PI-PLC activity was found mostly in soluble fraction when the retina homogenate was treated with 400 mM KCl, but was associated with rhabdomal membranes under low salt conditions (20 mM Hepes). A protein with apparent molecular mass of 130kD was recognized by an antibody against PLC beta 4/norp A in both 400 mM KCl soluble and rhabdomal membrane fractions. A 42 kD protein recognized by antibody against the C-terminus of Gq alpha was also present in these two fractions. GTP gamma S stimulated only the PI-PLC activity associated with membrane and was magnesium dependent. PI-PLC activity was found to be (i) highly dependent upon calcium concentrations, (ii) enhanced by GTP but not by other nucleotides, and (iii) significantly stimulated by light at lower concentrations of GTP gamma S. The stimulation by light was still observed when irradiated membrane was incubated at 10 degrees C for 10 min and then mixed with GTP gamma S. These results suggest that stable metarhodopsin stimulates a PLC beta 4/norp A-like enzyme via a G-protein, Gq.  相似文献   

5.
We have investigated whether alpha 2-macroglobulin (alpha 2M) of rabbits inhibits the activity of habutobin, a thrombin-like enzyme from Trimeresurus flavoviridis venom. Rabbit alpha 2M was purified with ultracentrifugation, gel filtration on Sepharose 6B and ion exchange chromatography on DEAE-Sephacel. Inhibitory effects of rabbit alpha 2M on habutobin was determined by the fibrin forming activity, digestion of A alpha chain of fibrinogen, and the release of fibrinopeptide A from fibrinogen. As a results, purified alpha 2M showed a single band with high molecular weight, around 800,000 mol. wt by means of polyacrylamide gel electrophoresis using PhastSystem. Besides inhibiting amidolytic and caseinolytic activity of porcine trypsin, it has inhibited the activity of habutobin: that is, in the presence of rabbit alpha 2M, fibrin forming activity of habutobin was decreased and habutobin-induced digestion of A alpha chain was inhibited. In addition, rabbit alpha 2M reduced habutobin-induced release of fibrinopeptide A from rabbit fibrinogen.  相似文献   

6.
The substrate 17 beta-[(1S)-1-hydroxy-2-propynyl]-androst-4-en-3-one (beta-HPA) and its enzyme-generated alkylating product 17 beta-(1-oxo-2-propynyl)androst-4-en-3-one (OPA) were synthesized to investigate the relationship between the 3 alpha and 20 beta activities observed in commercially available cortisone reductase (EC 1.1.1.53) from Streptomyces hydrogenans. beta-HPA, a substrate [apparent Km = 145 microM; Vmax = 63 nmol (min microgram)-1], when enzymatically oxidized by cortisone reductase of OPA, inactivates simultaneously the 3 alpha and 20 beta activities in a time-dependent and irreversible manner following pseudo-first-order kinetics. OPA alone, an affinity alkylating steroid (KI = 40.5 microM; k3 = 1.8 X 10(-2) S-1), simultaneously inactivates 3 alpha and 20 beta activities in a time-dependent and irreversible manner. At pH 7, the t 1/2 of enzyme inactivation for beta-HPA (10 h) or OPA (41 min) is slower than at pH 9.2 (beta-HPA, 16 min, and OPA, 3.3 min). Substrates (progesterone, 20 beta-hydroxypregn-4-en-3-one, and 5 alpha-dihydrotestosterone), but not all steroids (20 al]ha-delta 4-pregn-4-en-3-one and 17 beta-estradiol), protect against loss of both enzyme activities by beta-HPA and OPA. The alpha isomer of HPA is not enzymatically oxidized and therefore does not cause inactivation of either 3 alpha or 20 alpha activity. Thus, beta-HPA functions as a substrate for the enzymatic generation of a powerful affinity alkylator of cortisone reductase. Second, the identical change in both the 3 alpha and 20 beta activities in all experimental conditions clearly results from dual enzyme activity at a single enzyme active site.  相似文献   

7.
As a first part of our research focused on the synthesis of 17 beta-HSD type 1 inhibitors without estrogenic activity, we needed to identify a small, easy-to-handle pharmacophore able to block the enzymatic activity. Previous studies on the active site of the enzyme by affinity labeling gave us a basis for the design of steroidal inhibitors derivatives. Several estradiol derivatives bearing a short (three carbons) side chain in position 17 alpha or 16 alpha were synthesized and tested for their ability to inhibit the transformation of estrone into estradiol by 17 beta-HSD type 1 (cytosolic fraction of human placenta). We found that 16 alpha-derivatives of estradiol gave better 17 beta-HSD inhibition than their corresponding 17 alpha analogs. Among several chemical groups used in this study, we conclude that better 17 beta-HSD inhibition was obtained for compounds with a good leaving group at the end of side chain. Thus, an iodopropyl or a bromopropyl side chain at C16 alpha of estradiol (E2) inhibit efficiently the 17 beta-HSD type 1 with IC50 values of 0.42 and 0.46 microM, respectively. Their 17-keto analogs inhibit also the enzyme activity similarly. Since this kind of compounds inhibit the 17 beta-HSD type 1 in time-dependent manner and that enzymatic activity cannot be restored later, we conclude to inhibitor of inactivator type. This conclusion is in accordance with the correlation observed between the ability of leaving group to dissociate and their potency to inhibit 17 beta-HSD type 1. We have also observed that additional addition of untritiated estrone protect the enzyme against the inactivation caused by 16 alpha-bromopropyl-E2 suggesting a competitive inhibitor of 17 beta-HSD. The bromopropyl pharmacophore was then selected to be further added onto an antiestrogenic steroid nucleus.  相似文献   

8.
Three small peptide components were isolated and purified from the venom of Taiwan habu (Trimeresurus mucrosquamatus), which show specific activity to inhibit the strong proteolytic activity of multiple metalloproteinases present in the crude venom. Using multiple chromatographies coupled with successive ultrafiltrations, three inhibitors, i.e. pyroglutamate-lysine-tryptophan (pyroGlu-Lys-Trp), pyroglutamate-asparagine-tryptophan (pyroGlu-Asn-Trp) and pyroglutamate-glutamine-tryptophan (pyroGlu-Gln-Trp) were obtained in good yields and high homogeneity. The yields of these peptide fractions were estimated to be about 0.65 mg, 0.55 mg and 0.42 mg from 250 mg total lyophilized crude venom, which corresponded to the approximate concentrations of 8.4 mM, 7.3 mM and 5.4 mM respectively in venom secretion. Detailed and unambiguous structural determination was established by amino acid analyses, mass spectrometry and microsequencing of purified peptides. Further functional characterization of these three tripeptides showed that they could weakly inhibit three metalloproteinases previously isolated from the same venom. The inhibitory activities were similar among these tripeptides and their IC50 (concentration for 50% inhibition) were estimated in a range of 0.20-0.95 mM, which is much more effective than citrate, another venom protease inhibitor of low molecular-weight component. Since these tripeptides are the endogenous peptide inhibitors present in the lumen of venom glands, it is conceivable that they may act as a self-defensive mechanism against the auto-digestive deleterious effect of the strong metalloproteinases in vivo, particularly several zinc-dependent metalloproteinases present in crotalid and viperid venoms.  相似文献   

9.
Properties of mung bean pyruvate kinase were studied and the active site groups were derived. Metabolites like AMP, glucose, glucose-6-phosphate, fructose-6-phosphate, fructose-1, 6-bisphosphate, 3-phospho-glycerate, isocitrate, malate and alpha-ketoglutarate had practically no effect on pyruvate kinase activity. Alanine, serine, glutamine, methionine and GMP had a weak activating effect on the enzyme. Some metabolites such as ATP, GTP, and UMP were found to be weakly inhibitory. Moderate to strong inhibition was observed with citrate, succinate, glutamate and oxalate. Inhibition brought about by ATP and citrate when present together showed synergistic effect. Inhibition by citrate was non-competitive with respect to both PEP and ADP suggesting the presence of a regulatory site. Mung bean pyruvate kinase showed half optimal activity at pH 6.6 and 8.9 at saturating concentrations of PEP, ADP and Mg2+. Small concentrations of the SH specific reagents, namely iodoacetamide (0.1 and 0.2 mM), N-ethylmaleimide(0.05-0.1 mM) and p-chloromercuribenzoate (0.1 mM) inactivated the enzyme; single exponential loss of activity was observed in each case. Photooxidation of the enzyme in the presence of methylene blue (100 and 200 micrograms/ml) and rose bengal (5 and 10 micrograms/ml) also led to a single exponential activity decay. When the enzyme was treated with diethyl pyrocarbonate (DEP), a time dependent exponential decay in its activity was observed with a parallel increase in absorbance at 240 nm. PEP protected the enzyme against inactivation by DEP. Reagents specific for tyrosine (iodine and tetranitromethane) and tryptophan residues (N-bromosuccinimide) residues had no effect. These observations confirm that SH and imidazole groups are vital for the activity of the enzyme.  相似文献   

10.
Vanadate trapping of nucleotide and site-directed mutagenesis were used to investigate the role of the two nucleotide-binding (NB) sites in the regulation of ATP hydrolysis by P-glycoprotein (mouse Mdr3). Mdr3, tagged with a hexahistidine tail, was overexpressed in the yeast Pichia pastoris and purified to about 90% homogeneity by Ni-affinity chromatography. This protocol yielded purified, reconstituted Mdr3 which exhibited high verapamil stimulation of ATPase activity with a Vmax of 4.2 micromol min-1 mg-1 and a KM of 0.7 mM, suggesting that Mdr3 purified from P. pastoris is highly functional. Point mutations were introduced into the core consensus sequence of the Walker A or B motifs in each of the two NB sites. The mutants K429R, K1072R (Walker A) and D551N, D1196N (Walker B) were functionally impaired and unable to confer cellular resistance to the fungicide FK506 in the yeast Saccharomyces cerevisiae. Single and double mutants (K429R/K1072R, D551N/D1196N) were expressed in P. pastoris, and the effect of these mutations on the ATPase activity of Mdr3 was characterized. Purified reconstituted Mdr3 mutants showed no detectable ATPase activity compared to proteoliposomes purified from negative controls (<5% of wild-type Mdr3). Vanadate readily induced trapping of 8-azido-nucleotide in the wild-type enzyme after a short 10 s incubation, and specific photolabeling of Mdr3 after UV irradiation. No such vanadate-induced trapping/photolabeling was observed in any of the mutants, even after a 60 min trapping period at 37 degrees C. Since vanadate trapping with 8-azido-ATP requires hydrolysis of the nucleotide, the data suggest that 8-azido-ATP hydrolysis is dramatically impaired in all of the mutant proteins (<0.3% activity). These results show that mutations in either NB site prevent single turnover and vanadate trapping of nucleotide in the nonmutant site. These results further suggest that the two NB sites cannot function independently as catalytic sites in the intact molecule. In addition, the N- or C-terminal NB sites appear functionally indistinguishable, and cooperative interactions absolutely required for ATP hydrolysis may originate from both sites.  相似文献   

11.
A specific activator of blood coagulation factor X was purified from the venom of Bungarus fasciatus by gel filtration and by ion-exchange chromatography on a Mono-Q column (FPLC). It consisted of a single polypeptide chain, with a mol. wt of 70,000 in reducing and non-reducing conditions. The enzyme had an amidolytic activity towards the chromogenic substrates S-2266 and S-2302 but it did not hydrolyse S-2238, S2251 or S-2222, which are specific substrates for thrombin, plasmin and factor Xa, respectively. The enzyme activated factor X in vitro and the effect was Ca2+ dependent with a Hill coefficient of 7.9. As with physiological activators, the venom activator cleaves the heavy chain of factor X, producing the activated factor Xa alpha. The purified factor X activator from B. fasciatus venom did not activate prothrombin, nor did it cleave or clot purified fibrinogen. The amidolytic activity and the factor X activation activity of the factor X activator from B. fasciatus venom were readily inhibited by serine protease inhibitors such as diisopropyl fluorophosphate (DFP), phenylmethanesulfonyl fluoride (PMSF), benzamidine and by soybean trypsin inhibitor but not by EDTA. These observations suggest that the factor X activator from B. fasciatus venom is a serine protease. It therefore differs from those of activators obtained from Vipera russelli and Bothrops atrox venoms, which are metalloproteinases.  相似文献   

12.
Galactosyltransferase (UDPgalactose:glycoprotein galactosyltransferase EC 2.4.1.22) was isolated from swine mesentary lymhromatography on Sepharose 4B colums containing covalently bound p-aminophenyl-beta-D-N-acetylglucosamine. The homogenous enzyme showed a single band on disc gel electrophoresis and had a specific activity of 35 nmol min-1 (mg of protein)-1 at 37 degrees C. A molecular weight of 57 000 was obtained by exclusion chromatography, sucrose density centrifugation, and sodium dodecyl sulfate-gel electrophoresis. The same molecular weight was obtained after reduction and alkylation which indicates that the enzyme is composed of only a single polypeptide chain. The enzyme catalyzed the formation of beta1 leads to 4 bonds between galactose and free terminal N-acetylglucosaminyl residues of soluble preparations of porcine IgG immunoglobulin heavy chain, fetuin, ovalbumin, and ovomucoid. An endogenous glycoprotein, present in particulate subcellular preparations, was also a very good substrate for the enzyme, and it was identified as incomplete IgG immunoglobulin heavy chain. The Km of the purified enzyme was 2.9 x 10(-5) M for fetuin, 5.4 x 10(-5) M for ovalbumin, 2.0 x 10(-5) M for IgG immlnoglobulin heavy chain, and 2.2 x 10(-5) M for UDP-galactose. About 20% of the total galactosyltransferase activity in lymph node homogenates was present in the cytosol fraction, and 80% was in the microsomal and Golgi fractions. The kinetic properties of the bound and soluble galactosyltransferases were similar,and both required Mn2+ for maximal activity. However, the bound enzyme required the addition of detergent, lysolecithin, GDP-mannose, and UDP-N-acetylglucosamine for maximum activity. These compounds did not influence the activity of the soluble transferase. The membrane preparations catalyzed the transfer of galactose from UDP-galactose and N-acetylglycosamine from UDP-N-acetylglucosamine to incomplete oligosaccharide chains of endogenous IgG immunoglobulin bound to these particles. The labeled products of these reactions were isolated, and the structures of their oligosaccharide chains were determined and compared with those isolated from the heavy chain of porcine IgG immunoglobulin. The glycopeptide prepared from the endogenous acceptor and the major glycopeptide prepared by proteolytic digestion of the heavy chain of porcine IgG immunoglobulin has identical structures. The following structure for the carbohydrate chains of porcine IgG immunoglobulin was determined by sequential enzymatic hydrolysis and methylation studies.  相似文献   

13.
Hepatic microsomal testosterone/androstenedione 2 alpha-hydroxylase (i.e., cytochrome P450(2)alpha) was purified from female CD-1 mice. Protein purification was monitored in eluates from Fractogel, DEAE-sephacel, and hydroxylapatite columns at heme absorbing 417 nm and by cytochrome P450 content, reactivity to a monoclonal antibody against female-specific rat cytochrome P450 2C12, and testosterone 2 alpha-hydroxylase activity. The catalytic activity of the purified cytochrome P450(2)alpha, exhibiting a high degree of regioselectivity and stereospecificity, was basically restricted to the 2 alpha-hydroxylation of testosterone and androstenedione; representing > 96% and > 92% of these respective metabolites. Polyclonal antibodies against cytochrome P450(2)alpha exhibited a dose-dependent and very selective inhibition of testosterone 2 alpha-hydroxylation. The specific cytochrome P450 content of the purified cytochrome P450(2)alpha fraction was 12.06 nmol/mg protein. The specific testosterone 2 alpha-hydroxylase activity of the purified protein was 14 nmol/min/nmol cytochrome P450, which was about 60-fold higher than the respective microsomes. The apparent subunit molecular weight of cytochrome P450(2)alpha was 51,000 and the protein appeared as a single band on sodium dodecyl sulfate polyacrylamide gels. The amino-terminal sequence analysis indicates that cytochrome P450(2)alpha is a member of the murine cytochrome P450 2d family.  相似文献   

14.
Cathepsin L was purified from carp hepatopancreas by a method involving ammonium sulfate precipitation and a series of column chromatographies, in which the enzyme had an affinity toward Concanavalin A and Cibacron Blue F3GA. Its homogeneity was established by Native-PAGE, but two protein bands corresponding to molecular masses of 30,000 (single chain) and 24,000 (heavy chain) migrated on SDS-PAGE. The enzyme exhibited a maximum activity for carbobenzoxy-L-phenylalanyl-L-arginyl-4-methylcoumaryl-7-amide (Z-Phe-Arg-MCA) at pH 5.5-6.0 and 50 degrees C and the remarkable stability at pH 5.0-6.5 and below 40 degrees C. All tested cysteine protease inhibitors and TLCK and chymostatin markedly inhibited its activity, whereas the other serine protease inhibitors and a metalloprotease inhibitor negligibly affected it. In addition, several metal compounds reduced either its activity or stability to differing extents. Although EDTA alone caused an only marginal activation of the enzyme, its maximum activation required both 2 mM cysteine and 1 mM EDTA. The enzyme had an ability to hydrolyze three peptidyl-MCA substrates including Z-Phe-Arg-MCA, but all kinetic constants indicate that Z-Phe-Arg-MCA is the optical substrate to the enzyme.  相似文献   

15.
The putative protein glycation cross-link cleaving agent N-phenacylthiazolium bromide (PTB) underwent hydrolysis and cyclic hemithioacetal formation under physiological conditions to form two isomeric 2,3-dihydro-4-formyl-2-hydroxy-2-phenyl-1,4-thiazines: at pH 7.4 and 37 degrees, the rate constant k(Hydrolysis) was (2.6+/-0.1) x 10(-4) sec and the chemical half-life was ca. 44 min. The alpha,beta-dicarbonyl cleavage reaction only competed effectively with the hydrolysis when the alpha,beta-dicarbonyl substrate was at nonphysiological high levels. The high concentrations of PTB (10-30 mM) used previously to demonstrate chemical and biochemical activity also lead to acidification of incubation media. The mechanism of action of PTB now requires reappraisal.  相似文献   

16.
Pomacea canaliculata alpha-mannosidase (260 kDa), composed of at least two isoforms with different pI, was partially purified. The activity was maximum at pH 4 and unaltered after incubation at 60 degrees C for 60 min. ZnCl2, CaCl2, NaCl, and SH-reagents increased the activity, while MnCl2 and EDTA inhibited it. The enzyme catalyzed the hydrolysis of alpha 1-2, alpha 1-3, and alpha 1-6 mannosidic linkages.  相似文献   

17.
o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme.  相似文献   

18.
The enzyme system responsible for the N-deacetylation of eprinomectin in rats was characterized. Tissue and subcellular studies showed that the hydrolysis activity was localized mainly in liver microsomes. Apparent KM and Vmax values calculated from Lineweaver-Burk plots were 53 microM and 0.81 nmol/mg/min for male rats and 70 microM and 4.99 nmol/mg/min for female rats, respectively. Pretreatment of male rats with dexamethasone, phenobarbital, and pregnenolone 16alpha-carbonitrile increased the activity by more than 3-fold. Paraoxon and bis-4-nitrophenylphosphate strongly inhibited the deacetylase activity at concentrations as low as 1 microM. The hydrolysis activity also was inhibited by SKF525, but less effectively. Eserine strongly inhibited the activity at 1 x 10(-4) M. HgCl2 decreased the activity to about 40% at a concentration of 1 x 10(-4) M. FeCl3, CaCl2, MgCl2, and EDTA had little effect on the hydrolysis of eprinomectin, whereas NaF slightly increased the activity to 118%. Thus, the inhibition study suggested that eprinomectin deacetylase resembled "B" type carboxylesterase/amidases. The hydrolysis activity of eprinomectin and isocarboxazid, a specific substrate of RL2 [Hosokawa, M, Maki T and Satoh T (1987) Mol Pharmacol 31:579-584], by liver microsomes from rats treated with various cytochrome P-450 inducers correlated well (r = 0.92). Also, elusion profiles of esterase by gel filtration and ion exchange chromatography demonstrated that the active protein(s) for eprinomectin and isocarboxazid hydrolysis coeluted. Thus, RL2 or an enzyme system similar to RL2 is responsible for the N-deacetylation of eprinomectin.  相似文献   

19.
An extracellular beta-glucosidase from Fusarium oxysporum was purified to homogeneity by gel-filtration and ion-exchange chromatographies. The enzyme, a monomeric protein of 110 kDa, was maximally active at pH 5.0-6.0 and at 60 degrees C. It hydrolysed 1-->4-linked aryl-beta-glucosides and 1-->4-linked, 1-->3-linked and 1-->6-linked beta-glucosides. The apparent Km and kcat values for p-nitrophenyl beta-D-glucopyranoside (4-NpGlcp) and cellobiose were 0.093 (Km), 1.07 mM (kcat) and 1802 (Km), 461.5 min-1 (kcat), respectively. Glucose and gluconolactone inhibited the enzyme competitively with Ki values of 2.05 mM and 3.03 microM, respectively. Alcohols activated the enzyme; butanol showed maximum effect (2.2-fold at 0.5 M) while methanol increased the activity by 1.4-fold at 1 M. The enzyme catalysed the synthesis of methylglucosides, ethylglucoside and propylglucosides, as well as trisaccharides in the presence of different alcohols and disaccharides, respectively. In addition, the enzyme hydrolysed the unsubstituted and methylumbelliferyl cello-oligosaccharides [MeUmb(Glc)n] but the rate of hydrolysis decreased with increasing chain length. Analysis of products released from MeUmb(Glc)n as a function of time revealed that the enzyme attacked these substrates in a stepwise manner and from both ends. Thus, beta-glucosidase from F. oxysporum, with the above interesting properties, could be of commercial interest.  相似文献   

20.
Pig heart NAD-dependent isocitrate dehydrogenase is inactivated by adenosine 5'-O-[S-(4-bromo-2,3-dioxobutyl)thiophosphate] (AMPS-BDB) with incorporation of 1.78 mol of reagent/mol of average subunit. Complete protection against the inactivation is provided by 20 mM isocitrate + 1 mM Mn2+, and the incorporation is decreased to about 1.3 mol of reagent/mol of average subunit. The addition of NAD, NADH, or Mn2+ alone has little effect on the functional changes produced by AMPS-BDB, while ADP gives only partial protection against the inactivation. The ability of ADP to decrease the Km for isocitrate is not affected by the AMPS-BDB modification of the enzyme. These results indicate that the isocitrate substrate site is the target of AMPS-BDB. The enzyme has three types of subunits with a tetramer having the composition alpha2 beta gamma. Here, [2-3H]AMPS-BDB-modified subunits are separated by HPLC on a C4 reverse-phase column, after the treatment of the modified enzyme with 4 M urea. The predominant radioactivity is distributed in alpha and gamma subunits. However, evidence based on recombination of subunits from modified and unmodified enzymes indicates that only labeling of the alpha subunit is responsible for inactivation by AMPS-BDB. Subsequently, the separated modified subunits were chemically cleaved by CNBr and then purified by HPLC using a C18 column. The labeled peptides were further digested by pepsin, purified by HPLC, and sequenced. These results indicate that R88 and R98 from the alpha subunit are the major targets of AMPS-BDB which cause inactivation and that these are at or near the isocitrate site of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号