共查询到20条相似文献,搜索用时 0 毫秒
1.
球形纳米晶LiFePO4和Li4Ti5O12的制备及电池研究 总被引:3,自引:0,他引:3
分别通过"控制结晶"和"外凝胶"工艺合成了球形纳米晶LiFePO4/C和Li4Ti5O12/C材料.通过XRD、SEM、比表面及电化学性能测试等分析手段表明,合成的LiFePO4/C和Li4Ti5O12/C材料均为纳米一次粒子(晶粒)组成的球形二次粒子(颗粒),具有较大的比表面积,振实密度分别达到1.25和1.71g/cm3;1C倍率下的首次放电比容量分别达到144.0和144.2mAh/g,并表现出优良的循环性能.以LiFePO4/C和Li4Ti5O12/C为正负极材料组成的1.8V锂离子电池具有平稳的充放电电压平台和优异的循环性能. 相似文献
2.
3.
Lithium iron phosphate is one of the most promising positive-electrode materials for the next generation of lithium-ion batteries that will be used in electric and plug-in hybrid vehicles. Lithium deintercalation (intercalation) proceeds through a two-phase reaction between compositions very close to LiFePO(4) and FePO(4). As both endmember phases are very poor ionic and electronic conductors, it is difficult to understand the intercalation mechanism at the microscopic scale. Here, we report a characterization of electrochemically deintercalated nanomaterials by X-ray diffraction and electron microscopy that shows the coexistence of fully intercalated and fully deintercalated individual particles. This result indicates that the growth reaction is considerably faster than its nucleation. The reaction mechanism is described by a 'domino-cascade model' and is explained by the existence of structural constraints occurring just at the reaction interface: the minimization of the elastic energy enhances the deintercalation (intercalation) process that occurs as a wave moving through the entire crystal. This model opens new perspectives in the search for new electrode materials even with poor ionic and electronic conductivities. 相似文献
4.
5.
报道一种合成Li4Ti5O12的新颖方法。XRD结果表明该方法合成的Li4Ti5O12化合物为尖晶石结构。用扫描透射显微镜对该化合物的粒径和形貌进行了分析.并对Li4Ti5O12的电化学性能进行测试。结果表明,通过该法合成的尖晶石材料在3.2-0.8V电压范围,采用一定电流密度下进行充放电,具有较高的放电容量(235mAh/g)和较好的循环性能。该法合成的具有良好电化学性能的Li4Ti5O12,使得其成为很有潜力的锂离子电池负极材料。 相似文献
6.
7.
Shingo Tanaka Mitsunori Kitta Tomoyuki Tamura Yasushi Maeda Tomoki Akita Masanori Kohyama 《Journal of Materials Science》2014,49(11):4032-4037
We have performed density-functional theory calculations for Li4Ti5O12/Li7Ti5O12 (LTO/Li-LTO) interfaces and made a detailed analysis of the local atomic and electronic structures. In the bulk regions of the supercell, the atomic and electronic structures are well reproduced to be similar to those of the LTO and Li-LTO bulk crystals. The present (001) interface models show abrupt structural changes between the cubic spinel-based LTO and ordered rock-salt Li-LTO phases, while there occur no substantial strains around the interface due to the little volume change or lattice mismatch. Thus, the calculated interfacial energy is very small. The calculated O–K electron energy-loss near-edge structure/X-ray adsorption near-edge structure (ELNES/XANES) spectra in the bulk regions are similar to those of the bulk crystals, while the O–K edge spectra at the two kinds of interfaces have specific shapes, differently from the simple superposition of the bulk spectra. The preferential occurrence of the (001) interface can be understood from the preferential Li diffusion along the [110] direction in LTO and the small interfacial energy. 相似文献
8.
吸附法是目前从低锂浓度的盐湖卤水中提取锂的最有前途的方法。采用EDTA-柠檬酸络合法制备了Li4Mn5O12前驱体, 经酸浸脱锂后得到对Li+具有特殊选择性的锰氧化物锂离子筛。通过热重、XRD、SEM、FT-IR、化学组成、吸附动力学及共存金属离子的分配系数等手段对样品的晶相结构和Li+选择性吸附性能进行了研究。结果表明: 煅烧时间对Li4Mn5O12前驱体生成有较大影响, 由400℃煅烧24 h所得的前驱体几乎为纯相的Li4Mn5O12化合物, 经酸浸脱锂后的离子筛仍保持着与前驱体相同的尖晶石结构; 前驱体Li4Mn5O12和离子筛MnO2均为 200 nm左右的球状颗粒; 离子筛的最大吸附容量为43.1 mg/g, 并具有较好的Li+选择性。 相似文献
9.
以醋酸锂和钛酸四丁酯为原料,以乙醇为溶剂,采用溶胶.凝胶法制备Li4Ti5O12;以苯胺、过硫酸铵为原料,以盐酸为溶剂,采用原位聚合法合成Li4Ti5O12-聚苯胺复合材料。采用x射线衍射、红外光谱和电化学测试等对复合材料进行了表征。结果表明,聚苯胺的加入明显提高了Li4Ti5O12的电子导电性能,Li4rri5O12-PAn复合材料具有比Li4Ti5O12更好的高倍率性能和循环稳定性。0.1C和2.0C放电时Li4Ti5O12-PAn的放电容量达到了191.3和148.9mAh.g^-1,经80次循环后二者平均每次循环容量衰减率分别为0.13%和0.61%。 相似文献
10.
采用新的溶胶凝胶工艺,即在溶胶中加入活性炭与柠檬酸、聚乙烯醇和聚乙二醇等添加剂,制得具有尖晶石结构的新型准纳米晶Li4Ti5O12.测试表明,加入活性炭和聚乙二醇制备出的材料性能最优异,首次嵌脱锂效率可达99.2%,20mA/g电流条件下的可逆嵌锂容量为122.1mAh/g,嵌脱锂平台非常稳定.将其制成嵌锂电极后与活性炭电极构成新型的Li4Ti5O12/AC非对称电化学电容器.电化学测试表明,在20mA/g电流条件下,其Li4Ti5O12电极比电容量为103.5mAh/g,充放电效率达96%,充放电曲线的对称性、线性保持较好,电容器内阻小,大电流充放电性能突出. 相似文献
11.
12.
13.
14.
《Materials Chemistry and Physics》2007,101(2-3):372-378
Electrochemically active LiMn2O4, Li4Ti5O12, and LiFe5O8 particles with spinel structure (normal, mixed and mixed inverse) were made at production rates of 10–20 g h−1 by flame spray pyrolysis (FSP), a scalable, one-step, dry process. These materials were characterized by X-ray diffraction and nitrogen adsorption, and had a primary crystallite size in the range of 8–30 nm and exhibited high temperature stability. Electrochemical properties, as measured by slow cyclic voltammetry, are reported for LiMn2O4 and Li4Ti5O12 as potential cathode and anode materials, respectively, in secondary lithium-ion batteries. LiFe5O8 nanoparticles were made also by FSP containing the electrochemically active β-phase as shown by the corresponding cyclic voltammogram and specific charge–discharge spectra. 相似文献
15.
16.
Mathew V Lim J Gim J Kim D Moon J Kang J Kim J 《Journal of nanoscience and nanotechnology》2011,11(8):7294-7298
Li4Ti5O12 (LTO) nanoparticles were successfully synthesized by solvothermal technique using cost-effective precursors in polyol medium and post-annealed at temperatures of 400, 500, and 600 degrees C. The XRD patterns of the samples were clearly indexed to the spinel shaped Li4Ti5O12 (space group, Fd-3 m). The particle size and morphology of samples were identified using field-emission SEM. The electrochemical performance of solvothermal samples revealed fairly high initial discharge/charge specific capacities in the range 230-235 and 170-190 mAh/g, at 1 C-rate, while that registered for the solid-state sample has been 160 and 150 mAh/g, respectively. Furthermore, among these samples, LTO annealed at 500 degrees C exhibited highly improved rate performances at C-rates as high as 30 and 60 C. This was attributed to the achievement of small particle sizes with high crystallinity in nano-scale dimensions and hence shorter diffusion paths combined with larger contact area at the electrode/electrolyte interface. 相似文献
17.
18.
Nanocrystalline Li4Ti5O12/Li3SbO4/C composite-prepared by mechanical ball-milling of Li4Ti5O12 (synthesized by aqueous combustion), Li3SbO4 (synthesized by solid state method) and activated carbon, has been investigated as anode in lithium-ion coin cells and compared to pristine Li4Ti5O12. Galvanostatic charge–discharge measurements in the potential window of 0.05–2.0 V show three plateau regions corresponding to Li insertion/extraction in the composite: a large flat plateau at ~ 1.52/1.59 V, followed by a second plateau at ~ 0.75/1.1 V and a sloppy tail at ~ 0.4/0.6 V. While the plateaus at ~ 0.4/0.6 V and ~ 1.52/1.59 V correspond to Li4Ti5O12, the other one at ~ 0.75/1.1 V corresponds to Li3SbO4. At a high rate of ~ 15 C, the capacity for Li4Ti5O12/Li3SbO4/C composite is found to be 105 mAhg?1 retaining ~ 78% of its initial capacity compared to only 58 mAhg?1 (~ 27% of the initial capacity) at 14 C for pristine Li4Ti5O12 up to 100 cycles. Thus, such composite material might find application in lithium-ion batteries requiring high rate of charge and discharge. 相似文献
19.
采用LiOH-LiNO3复合熔盐合成锂离子电池负极材料尖晶石结构Li4Ti5O12,应用XRD、SEM、CV以及恒流充放电测试等手段对所合成材料进行了结构表征和性能测试.结果表明,当反应物中n(Li):n(Ti)=4时合成的样品为纯的尖晶石相Li4Ti5O12,合成所需时间短、熔盐比例低.以电流密度15mA/g进行恒流充放电测试,其首次放电比容量为164.4mAh/g,电压平台宽,平台电压为1.55V.循环15周后放电比容量为156.7mAh/g,容量保持率为95.3%,循环性能优良. 相似文献