首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《矿冶》2014,(3)
云南省允沟铁矿属于混合铁矿石类型,原矿铁品位为43.44%,主要以磁铁矿和赤、褐铁矿的形式存在。有害元素硫、磷、砷含量较低,对矿石的利用不造成影响。通过对该矿石原矿性质的研究,在磨矿细度为-0.074 mm占80%的条件下,采用弱磁选一强磁选,可以获得品位61.55%、铁回收率为85%的铁精矿;适度增加磨矿细度可以获得品位更高的铁精矿。  相似文献   

2.
对印尼某磁铁矿-赤铁矿混合矿石进行了选矿试验研究。磨矿弱磁选试验结果表明,磨矿细度控制在-74μm70.67%、磁场强度159.2 kA/m,弱磁选精矿品位65.46%、回收率52.70%。采用弱磁-强磁流程,综合铁精矿的产率68.32%、品位61.61%、回收率79.04%;采用弱磁-摇床流程,综合铁精矿的产率59.63%、品位63.65%、回收率71.27%。  相似文献   

3.
采用重选及弱磁—强磁工艺对巴西某镜铁矿进行了选矿工艺对比试验研究。结果表明,原矿磨至-0.074mm占50%,在弱选磁场强为1200Oe、强磁选场强为12000Oe的条件下,通过弱磁—强磁工艺可获得铁精矿品位67.58%、回收率96.21%的良好技术指标。用摇床重选也可获得较高品位的精矿,但与弱磁—强磁流程相比,精矿回收率较低。  相似文献   

4.
林小凤  袁启东  张永 《现代矿业》2022,(7):159-161+167
为合理开发利用某赤褐铁矿资源及为后续选别工艺提供技术参考依据,针对该矿石的性质特点进行了系统的选矿工艺试验研究。试验结果表明:采用原矿—磨矿(-0.076mm95%)—强磁选工艺,可获得铁品位55%以上的铁精矿;采用原矿—磨矿(-0.076 mm95%)—螺旋溜槽重选工艺、原矿—磨矿(-0.076 mm95%)—强磁—螺旋溜槽重选工艺,可获得品位58%以上的铁精矿。  相似文献   

5.
辛贵强 《矿冶工程》2015,35(4):48-50
对西藏某磁赤混合铁矿进行了选矿试验研究。在原矿TFe品位39.23%的条件下, 采用粗磨-弱磁-强磁选流程, 获得了混合铁精矿产率48.86%、TFe品位63.50%、TFe回收率80.50%的选矿指标。同时, 在流程试验的基础上, 对选矿生产设备进行了优化配置, 获得了高效节能、经济合理的设备配置方案。  相似文献   

6.
某难选含锰贫铁矿的选矿试验研究   总被引:2,自引:0,他引:2  
本文针对云南某地含锰贫铁矿物嵌布粒度微细,组分复杂的特点,进行了选矿试验研究。研究结果表明:将碳粉加入原矿中进行氧化还原焙烧,再将焙烧所得矿石磨细至矿物单体解离后进行弱磁选回收铁矿物,可得到品位为49.78%、回收率为53.58%的铁精矿;弱磁选尾矿再用强磁选回收锰矿物,可得品位36.54%、回收率为81.69%的锰精矿。  相似文献   

7.
将某选厂的磁选尾矿和反浮选尾矿按实际生产的产率比例混合后,进行铁矿物的回收试验。利用不同矿物间的相互载体作用进行反浮选,采用Slon-100周期式脉动高梯度磁选机进行抛尾,极大地提高了分选指标。采用两段磨矿,两段强磁选,两段弱磁选,反浮选工艺,试验最终得到产率7.54%,品位65.35%,回收率25.57%的铁精矿,以及产率8.69%,铁品位29.30%,回收率13.43%的中矿,最终尾矿品位为13.68%,与实际生产相比,精矿产率提高2.74%,回收率提高6.50%。  相似文献   

8.
王涛  肖金雄  龙艳 《矿冶工程》2020,40(2):60-62
对安徽某难选磁铁矿与镜铁矿混合矿进行了选矿试验研究, 采用阶段磨矿-弱磁选-筛分-中磁选-强磁选-重选-反浮选工艺流程, 获得了铁精矿产率42.20%、品位66.37%、回收率85.93%的良好指标, 实现了铁矿物的高效分选。  相似文献   

9.
该铁矿为鸡窝矿,有用矿物以针铁矿为主,其次为褐铁矿,矿石性质复杂,且大部分矿石呈细粒嵌布。原矿分级后对粗、细粒级分别采用干式磁选和湿式磁选两种工艺,都获得了较好的指标,精矿品位比原矿提高6%以上,达到企业要求,可配矿后作为炼铁原料。  相似文献   

10.
云南某砂钛矿选矿试验研究   总被引:3,自引:0,他引:3  
通过对云南某砂钛矿的性质及其相关研究,认为强磁-磨矿-弱磁-重选是处理该矿石的有效工艺.试验表明:该工艺选矿指标较好,能够得到钛品位和回收率分别为47.58%和52.00%的钛精矿,铁品位和回收率分别为57.50%和10%的铁精矿.  相似文献   

11.
内蒙古某钛铁矿的主要有价矿物为钛铁矿和钒钛磁铁矿,并伴生有极少量的锆石和金红石,试验原料为现场原矿经螺旋选矿机重选后得到的重砂产品,试验采用弱磁选铁-强磁选钛-摇床精选工艺流程,在给矿中w(TiO2)=18.29%,w(Fe)=23.68%的情况下,获得TiO2品位48.79%和TiO2回收率70.56%的钛精矿,以及Fe品位58.29%和Fe回收率35.96%的钒钛磁铁精矿.  相似文献   

12.
为了设计筹建内蒙古包头市固阳县选矿厂 ,对梅岭沟铁矿石进行可选性试验研究 ,采用一段磨矿—粗—精磁选工艺流程 ,在原矿含铁品位 38 5 0 %的条件下 ,获得含铁品位 6 3 80 % ,铁回收率 94 36 %的磁选指标 ,为选矿厂设计提供必要的依据。  相似文献   

13.
随着矿山资源的不断开采与加工利用,某地铁矿尾矿库容量接近饱和,不仅占用土地,还会污染环境。为开发其二次资源,作者在对铁矿尾矿进行多元素分析、粒度分布和铁物相分析的基础上选择试验方案,对矿石中的磁铁矿矿物进行弱磁选机条件试验,考查了适宜的粒度、场强、给矿浓度、给矿时间等因素,再对弱磁选机尾矿进行强磁试验,然后再采用重选的方法进行分选,最后进行综合流程试验。根据不同试验方法、不同流程工艺的试验对比,确定磁选加重选的联合流程工艺为最佳的铁尾矿分选工艺。最终铁混合精矿的产率为9.39%,精矿回收率为27.91%,精矿品位62%,分选效果良好。试验结果不仅可有效回收尾矿中的铁,而且也部分解决了该矿的尾矿堆存问题,为今后矿山的开发利用和实现循环经济的发展奠定了基础,具有很大的潜力以及经济和社会效益。  相似文献   

14.
本文以青海某低品位铁矿为研究对象,对其进行了详细的工艺矿物学研究,并根据原矿性质特点进行选矿试验研究。在原矿全铁含量为33.35%,磨矿细度-0.076mm占63.7%,磁场强度为1800GS条件下,采用一步磁选即可获得全铁含量为69.60%,回收率为88.63%的铁精矿。  相似文献   

15.
分析了某贫锰、铁矿石的工艺矿物学性质,围绕选矿开展了摇床选别试验。试验结果表明,各项技术指标均达到了预期的要求,经济效益明显提高。  相似文献   

16.
某镜铁矿选矿工艺试验研究   总被引:1,自引:0,他引:1  
某地镜铁矿石中主要铁矿物为镜铁矿和赤铁矿,脉石矿物主要为方解石、部分泥质物质和少量石英。采用重选、强磁选、强磁-重选及强磁-反浮选等联合工艺,对该矿石进行了分选试验。结果表明,对这种类型的镜铁矿,采用强磁-反浮选工艺,在原矿铁品位为35.00%的情况下,可获得铁精矿品位66.62%、回收率58.38%的良好技术指标。  相似文献   

17.
针对西北某铁矿矿物组成、嵌布关系复杂及嵌布粒度较细的特点,进行了选矿试验研究。试验结果表明:原矿在焙烧温度700℃、焙烧时间50 min条件下,进行中性焙烧后,再经磨矿-弱磁选-弱磁选尾矿强磁选流程处理后,可获得铁品位为66.85%、回收率为45.67%的弱磁选精矿和铁品位为62.80%、回收率为38.98%的强磁选精矿,综合精矿铁品位为64.92%、回收率为84.65%。  相似文献   

18.
以非洲某铜矿混合矿为研究对象,采用一次粗选、三次精选、两次扫选闭路浮选流程,对氧化率0.71%~13.28%的三个样品,进行了同等条件下的浮选效果对比试验,得出氧化率变化对浮选指标的影响规律,并针对因氧化率增高较多导致精矿铜回收率骤降23.73%的问题,进行了浮选条件优化试验,提出氧化率在较大范围内变化时,保持工艺流程不变,仅微调药剂制度即可保持产品指标稳定的技术途径,对组织现场生产的稳定运行具有重要的指导意义。  相似文献   

19.
李伟 《矿冶》2014,23(5):13-15
云南某铁矿含钼0.954%,铅2.67%,银29.07 g/t,铁26.53%,二氧化硅38.52%,在矿石工艺矿物学及试验研究的基础上,采用一段磨至-0.074 mm占83.4%,两次粗选,第二次粗选直接产出合格钼精矿;三次扫选;扫选精矿与第一次粗选精矿合并,两次精选产出另一个钼精矿的选矿工艺。闭路试验获得了精矿产率10.71%,钼品位8.09%,铅品位19.27%,钼回收率90.97%,铅回收率77.59%,含银195.6 g/t的技术指标。  相似文献   

20.
南非某铬铁矿尾矿含Cr2O3品位23.07%,为了合理开发利用该资源,提高该资源的利用率,本文以该铬铁矿尾矿为研究对象,采用全粒级摇床重选工艺流程、全粒级分级重选工艺流程、磨矿单一重选工艺流程和磨矿—分级—重选工艺流程四种方案对该试样进行试验研究,最终磨矿—分级—摇床重选工艺流程可以获得Cr2O3品位46.36%,回收率81.21%的较好指标。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号