首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
针对新型五自由度无轴承异步电动机这一多变量、非线性、强耦合的系统,采用逆系统的方法进行解耦控制.首先介绍了五自由度无轴承异步电动机的工作原理,分别给出混合磁轴承和无轴承异步电动机的力学方程,并建立电机状态方程.然后根据状态方程分析系统的可逆性,应用逆系统方法实现径向力与转矩力之间、径向力之间的动态解耦.最后由线性综合方法设计系统模型的闭环控制器.仿真结果表明,系统具有良好的动态和静态性能.  相似文献   

2.
首先介绍逆系统的一般原理,然后针对异步电动机这一非性耦合,多变量的控制系统,采用逆系统的方法进行分析,通过给定不同的条件,选择不同的输入和输出,论证系统的有可逆性。  相似文献   

3.
基于神经网络逆系统的磁悬浮开关磁阻电动机的解耦控制   总被引:12,自引:1,他引:12  
磁悬浮开关磁阻电动机作为一个多变量、非线性和强耦合的系统,其控制系统的设计非常复杂.对于磁悬浮开关磁阻电动机来说,得到径向力和平均转矩的先验知识是实现电机闭环控制的基本条件.基于基本电磁场理论,论文给出磁悬浮开关磁阻电动机的径向力模型,对该模型进行可逆性分析,证明该系统可逆,应用神经网络逆系统方法实现径向力的动态解耦,以便达到高性能的控制目的,仿真结果验证了方法的可行性.  相似文献   

4.
基于转子磁场定向的无轴承异步电机逆系统解耦控制   总被引:1,自引:0,他引:1  
无轴承异步电机是一个多变量、强耦合、非线性的系统,根据无轴承异步电机的运行机理,推导了旋转力和径向悬浮力方程,建立了基于转子磁场定向的电机的状态方程,根据状态方程分析系统的可逆性,应用α阶逆系统的方法实现了径向悬浮力与旋转力之间、径向悬浮力之间的动态解耦;并采用线性综合方法设计了系统的闭环控制器。仿真结果表明,系统具有良好的动、静态性能。  相似文献   

5.
基于逆系统理论的永磁同步电动机解耦控制   总被引:1,自引:0,他引:1  
针对永磁同步电机这种多变量、非线性、强耦合的控制对象,应用逆系统方法,将永磁同步电机解耦成二阶线性转速子系统和一阶线性磁链子系统;在此基础上,采用鲁棒伺服控制器对伪线性子系统进行线性闭环控制设计.仿真试验表明,这种控制策略能够实现永磁同步电机转速和定子磁链之间的动态解耦控制,并且系统具有良好的动静态性能.  相似文献   

6.
冯冬梅  刁小燕  朱熀秋 《微特电机》2013,41(4):38-41,45
阐述了无轴承同步磁阻电动机的工作原理及其数学模型,综述了无轴承同步磁阻电动机在解耦控制策略方面的研究成果,并对解耦控制策略的优缺点进行了分析和比较。最后,提出了解耦控制未来的研究发展方向。  相似文献   

7.
基于a阶逆系统五自由度无轴承永磁电机解耦控制   总被引:12,自引:2,他引:12  
文中应用多变量非线性控制a 阶逆系统方法,对新型五自由度无轴承永磁同步电机这一多变量、非线性、强耦合的控制对象进行动态解耦控制研究。介绍了新型五自由度无轴承永磁同步电机结构,阐述了a 阶逆系统方法,分析了三自由度磁轴承的工作原理和二自由度无轴承永磁同步电机径向力产生机理,给出三自由度磁轴承轴向力、径向悬浮力方程和二自由度无轴承永磁同步电机转矩力和径向悬浮力方程,建立了电机的状态方程,分析了基于a 阶逆系统方法解耦控制的可行性,推导出基于a 阶逆系统方法的动态解耦控制算法,并进行了仿真研究。仿真结果表明这种控制策略能够实现五自由度无轴承永磁同步电机转矩力和悬浮力之间的动态解耦控制,系统具有良好的动、静态性能。  相似文献   

8.
永磁同步电动机逆系统解耦控制   总被引:2,自引:0,他引:2  
张兴华  张冀 《微电机》2007,40(8):9-12
提出了一种永磁同步电动机(PMSM)的逆系统线性化解耦控制方法。首先,通过非线性状态反馈获得PMSM的逆系统,将多变量、非线性、强耦合的PMSM动态解耦成转速与定子电流两个低阶的线性子系统,然后,分别设计线性控制器对转速与定子电流子系统进行闭环控制。仿真结果表明:提出的控制方案具有优良的动态和静态性能,且对负载变化具有较强鲁棒性。  相似文献   

9.
针对永磁同步电动机这一非线性多变量的复杂系统,提出了不依赖对象精确数学模型与参数的永磁同步电动机神经网络逆系统控制方法.给出了永磁同步电动机的一般数学模型和解析逆模型,证明了该系统可逆,用神经网络逆系统对其进行控制是可行的.永磁同步电动机的逆系统由静态神经网络加积分器构成,与原系统串联,实现了永磁同步电动机的转速和磁链动态解耦.在此基础上,对两个解耦的伪线性子系统设计了线性闭环调节器,使整个系统获得优良的动静态性能.仿真实验结果表明,神经网络逆系统方法可以实现对永磁同步电动机的高性能控制,对参数变化和负载扰动具有较强的鲁棒性.  相似文献   

10.
基于支持向量机逆系统的无轴承异步电机非线性解耦控制   总被引:1,自引:0,他引:1  
无轴承异步电机是非线性、多变量和强耦合的系统,实现其电磁转矩和径向悬浮力之间的动态解耦控制是电机稳定悬浮运行的关键。本文采用基于最小二乘支持向量机(LS-SVM)α阶逆系统的方法对无轴承异步电机进行解耦控制。将用LS-SVM辨识出的无轴承异步电机逆系统串联在原系统之前,使复杂的非线性原系统解耦成四个独立的伪线性子系统——两个径向位移子系统、一个速度子系统和一个转子磁链子系统,然后根据线性系统理论进行系统综合。最后的仿真试验研究表明,基于LS-SVMα阶逆系统方法能够实现无轴承异步电机悬浮力和旋转力之间的动态解耦控制。  相似文献   

11.
为了实现磁悬浮开关磁阻电机径向二自由度悬浮力与旋转力三者之间的完全解耦,首先对系统的数学模型进行了可逆性分析,证明该系统在一定条件下可逆,在此基础上应用神经网络逆系统方法,将非线性、强耦合的多变量系统转变成3个彼此无耦合的伪线性子系统,最后应用线性系统控制原理和智能控制理论,对这3个子系统设计了闭环专家PID控制器。仿真结果表明,系统具有良好的动静态性能。  相似文献   

12.
感应电机的逆系统方法解耦控制   总被引:8,自引:0,他引:8  
针对感应电机这一多变量、非线性、强耦合的控制对象,应用逆系统方法,将感应电机转速与转子磁链解耦成2个二阶子系统。在此基础上,运用线性系统理论对其进行控制。仿真结果表明这种基于逆系统方法的反馈线性化控制策略可实现感应电机的高性能控制。  相似文献   

13.
磁悬浮开关磁阻电机是一个复杂的非线性强耦合系统,且运行过程中容易出现磁饱和现象,增大了数学模型建立及解耦控制的难度。针对上述问题,在利用有限元方法分析其磁场及电磁力特性的基础上,计算了一种对电机磁路线性及饱和状态均适用的新数学模型。分析了系统的可逆性,采用神经网络逆实现了转矩和两自由度径向力的解耦。使用dSPACE系统试验验证了该方法的正确性和有效性,可以弥补现有基于无磁饱和假设的各种建模及相应的解耦控制方法不适用于BSRM磁饱和工况的缺陷,也可以为电机的运行特性分析、本体优化设计以及控制策略研究提供更准确的理论依据。  相似文献   

14.
基于气隙磁场定向的无轴承异步电机非线性解耦控制   总被引:21,自引:0,他引:21  
无轴承异步电机是一个强耦合的非线性复杂系统 ,实现其电磁转矩和径向悬浮力之间的解耦控制是该电机稳定运行的前提。本文在研究电机磁悬浮机理的基础上 ,利用电枢绕组气隙磁场定向控制来实现两者之间的动态解耦控制。实验证明该控制算法不仅能实现电机稳定的悬浮 ,而且使电机具有良好的调速性能  相似文献   

15.
基于自适应转子电阻估计器的感应电机逆解耦控制   总被引:1,自引:0,他引:1  
张兴华 《电气传动》2005,35(11):36-40
提出了一种具有自适应转子电阻估计器的感应电机的逆解耦控制方法.首先通过非线性状态反馈获得感应电机的逆系统,将感应电机这个多变量、非线性、强耦合的对象动态解耦成转速与转子磁链两个二阶子系统;然后,采用模型参考自适应系统(MRAS)理论来设计转子电阻估计器,在线估计时变的转子电阻,从而保证在整个电机运行区域内,转速与磁链之间的输入输出解耦关系不变;最后,分别设计线性控制器对转速与磁链子系统进行闭环控制.仿真结果表明,提出的控制方案具有优良的动态和静态性能,且对电机参数变化具有强鲁棒性.  相似文献   

16.
由于感应电动机运行过程中的参数变化,磁场定向控制和解析逆控制所实现的解耦线性化遭到破坏.为此,基于输出为转子磁链幅值和转速的电流控制型感应电动机模型,本文提出了一种神经网络逆解耦线性化方法,理论分析表明,此方法可以实现感应电动机系统的自适应解耦线性化,弱化转子磁链与转速之间的耦合,从而简化外环控制器的设计,进一步提高整个系统控制性能.最后,对采用所提解耦线性化方法的整个感应电动机控制系统进行仿真研究,仿真结果对比表明该解耦线性化方法是有效的.  相似文献   

17.
感应电机多标量模型具有状态变量是标量且物理意义明确和不需旋转坐标变换等优点;神经网络逆系统适合解决不确定性因素(参数变化和外在扰动等)存在的情况下,感应电机高性能的控制问题.为此,提出基于多标量模型的感应电机神经网络逆控制结构,实现感应电机系统的自适应解耦线性化,进而提高系统控制性能.最后对系统进行了仿真研究和软硬件实现方案讨论,理论分析和仿真表明所提控制结构是有效的.  相似文献   

18.
异步电动机定子磁链与电磁转矩的逆系统解耦控制方法   总被引:12,自引:0,他引:12  
为了实现脉宽调制电压源型逆变器供电的异步电动机调速系统定子磁链和电磁转矩的动态解耦控制,基于逆系统理论提出了一种新型的解耦控制策略。根据异步电动机调速系统的动态数学模型,证明了其逆系统的存在性,在此基础上得到了逆系统的输入输出方程。把得到的逆系统和异步电动机调速系统相级联,从而将多变量、非线性、强耦合的控制对象解耦成了两个一阶线性子系统,分别称为转矩子系统和磁链子系统,利用线性控制理论对各个调节器进行了设计,实现了定子磁链和电磁转矩对各自参考值的全局渐进跟踪。使用Matlab软件进行了仿真实验,实验结果验证了控制方案的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号