首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The T4 phage capsid accessory protein genes soc and hoc have recently been developed for display of peptides and protein domains at high copy number (Ren et al., 1996. Protein Science 5, 1833-1843; Ren et al., 1997. Gene 195, 303-311). That biologically active and full-length foreign proteins can be displayed by fusion to SOC and HOC on the T4 capsid is demonstrated in this report. A 271-residue heavy and light chain fused IgG anti-EWL (egg white lysozyme) antibody was displayed in active form attached to the COOH-terminus of the SOC capsid protein, as demonstrated by lysozyme-agarose affinity chromatography (>100-fold increase in specific titer). HOC with NH2-terminal fused HIV-I CD4 receptor of 183 amino acids can be detected on the T4 outer capsid surface with human CD4 domain 1 and 2 monoclonal antibodies. The number of molecules of each protein (10-40) bound per phage and their activity suggest that proteins can fold to native conformation and be displayed by HOC and SOC to allow binding and protein-protein interactions on the capsid.  相似文献   

2.
We have used transgenic tobacco seeds to produce large amounts of a functionally active engineered antibody. A gene infusion encoding an antigen-binding single chain Fv protein (scFv) that recognizes the hapten oxazolone was constructed and used as a model. After characterization in a bacterial expression system ,the scFv gene was cloned into a plant expression cassette conferring seed specific expression, and transferred using Agrobacterium-mediated transformation, into Nicotiana tabacum. The expressed scFv could be detected in the developing as well as ripe seeds of regenerated transgenic plants, and the functionally active scFv is stabaly deposited and accumulates up to 0.67% of the total soluble seed protein. After storage of ripe transgenic tobacco seeds for one year at room temperature there was no loss of scFv protein or its antigen-binding activity.  相似文献   

3.
We have developed a technique to establish catalogues of protein products of arrayed cDNA clones identified by DNA hybridisation or sequencing. A human fetal brain cDNA library was directionally cloned in a bacterial vector that allows IPTG-inducible expression of His6-tagged fusion proteins. Using robot technology, the library was arrayed in microtitre plates and gridded onto high-density in situ filters. A monoclonal antibody recognising the N-terminal RGSH6sequence of expressed proteins (RGS.His antibody, Qiagen) detected 20% of the library as putative expression clones. Two example genes, GAPDH and HSP90alpha, were identified on high-density filters using DNA probes and antibodies against their proteins.  相似文献   

4.
Mesoderm formation is the first major differentiative event in vertebrate development. Many new mesoderm-specific genes have recently been described in the mouse, chick, frog and fish and belong to classes comprising T-domain genes, homeobox genes and those encoding secreted proteins. The T-domain genes have different but overlapping expression patterns and, in Xenopus, can ectopically activate nearly all other mesodermal genes. Several new homebox genes seem to mediate the ventralising activity of bone morphogenetic protein. New genes encoding secreted proteins induce dorsal mesoderm, in some cases by antagonizing ventralising factors.  相似文献   

5.
6.
A bacteriophage T4-derived protein expression, packaging and processing system was used to create recombinant phage that encode, produce and package a protein composed of human HIV-1 protease fused to green fluorescent protein (GFP). The fusion protein is targeted within the phage capsid by an N-terminal capsid targeting sequence (CTS), which is cleaved through proteolysis by the viral scaffold protease P21. The fusion protein is designated CTS [symbol see text] GFP:PR. The [symbol see text] symbol indicates the linkage peptide sequence leu(ile)-N-glu that is cleaved by the T4 head morphogenetic proteinase gp21 during head maturation. The fusion protein is fluorescent and has protease activity as detected by the appearance of the expected substrate cleavage product on a Western blot. CTS [symbol see text] GFP:PR packaging occurs at about 200 molecules per phage particle. The CTS [symbol see text] GFP:PR fusion protein, when protected within the phage capsid, has been maintained stably for over 16 months at 4 degrees C. Production and storage of fusion protein within the phage circumvents problems of toxicity and solubility encountered with E. coli expression systems. Because recombinant phage inhibit host proteolytic enzymes, foreign proteins are stabilized. This phage system packages and processes the fusion protein by means of the CTS. Proteins can be purified from the phage to give high yields of soluble, proteolytically processed protein. The T4 phage packaging system provides a novel means of identification, purification and long-term storage of toxic proteins whose folding and DNA-directed activities can be studied readily in vivo.  相似文献   

7.
Microorganisms and plants manufacture a large collection of medically and commercially useful natural products called polyketides by a process that resembles fatty acid biosynthesis. Genetically engineered microorganisms with modified polyketide synthase (PKS) genes can produce new metabolites that may have new or improved pharmacological activity. A potentially general method to prepare cell-free systems for studying bacterial type II PKS enzymes has been developed that facilitates the purification and reconstitution of their constituent proteins. Selective expression of different combinations of the Streptomyces glaucescens tetracenomycin (Tcm) tcmJKLMN genes in a tcmGHIJKLMNO null background has been used to show that the Tcm PKS consists of at least the TcmKLMN proteins. Addition of the TcmJ protein to the latter four enzymes resulted in a greater than fourfold increase of overall activity and thus represents the optimal Tcm PKS. Polyclonal antibodies raised against each of the TcmKLMN proteins strongly inhibit the Tcm PKS, as do known inhibitors targeted to the active site Cys and Ser residues of a fatty acid synthase. This system exhibits a strict starter unit specificity because neither propionyl, butyryl, or isobutyryl coenzyme A substitute for acetyl coenzyme A in assembly of the Tcm decaketide. Because the Tcm PKS activity is significantly diminished by removal of the TcmM acyl carrier protein and can be restored by addition of separately purified TcmM to two different types of TcmM-deficient PKS, it should be possible to use such preparations to assay for each of the constituents of the Tcm PKS.  相似文献   

8.
Epitope tagging simplifies detection, characterization and purification of proteins. Gene fusion to combine the coding region of a well-characterized epitope with the coding region for a protein of interest generally requires several subcloning steps. Alternatively, a PCR strategy can be used to generate such a chimeric gene. In addition to its simplicity, this approach allows one to limit the size of the multiple cloning sites present in conventional expression vectors, thus reducing the introduction of artifactual amino-acid sequences into the fused protein. In this communication, we describe new vectors that allow PCR cloning and selection of chimeric genes coding for N- or C-terminal His-tagged proteins. These vectors are based on the control of cell death CcdB direct selection technology and are well adapted to the cloning of blunt-ended PCR products that were generated by using thermostable polymerases that provide proofreading activity.  相似文献   

9.
Monoclonal antibodies (MAbs), because of their inherent specificity, are ideal targeting agents. They can be used to deliver radionuclides, toxins or cytotoxic drugs to a specific tissue or malignant cell populations. Intact immunoglobulin (IgG) molecules have several practical limitations of their pharmacology; their relatively large size of approximately 150,000 daltons leads to a slow clearance from the blood pool and the body resulting in significant exposure to normal organs with limited quantities delivered to tumors. The IgG molecule shows a relatively poor diffusion from the vasculature into and through the tumor. Attempts to modify the pharmacology of the Ig molecule have classically involved the use of proteases to generate F(ab')2 and Fab' fragments with molecular weights of approximately 100,000 and 50,000 daltons, respectively. Fv fragments of IgG are one of the smallest size functional modules of antibodies that retain high affinity binding of an antigen. Their smaller size, approximately 25,000 daltons, enables better tumor penetration and makes them potentially more useful than a whole antibody molecule for clinical applications. Molecular cloning and expression of the variable region genes of IgG has greatly facilitated the generation of engineered antibodies. A single-chain Fv (scFv) recombinant protein, prepared by connecting genes encoding for heavy-chain and light-chain variable regions at the DNA level by an appropriate oligonucleotide linker, clears from the blood at much faster rate than intact IgG. The scFv fragment can retain an antigen-binding affinity similar to that of a monovalent Fab' fragment; this however, represents a relative decrease in binding affinity when compared to intact antibodies. The scFv with its faster clearance and lower affinity results in a lower percent-injected dose localizing in tumors when compared to the divalent IgG molecule. This may be adequate for imaging but probably not for therapy. The valency of the MAb fragment is critical for the functional affinity of an antibody to a cell surface or a polymeric antigen. In attempts to generate multivalent forms of scFv molecules, non-covalently linked scFv dimeric and trimeric molecules, disulfide linked dimeric scFvs, as well as covalently linked chimeric scFvs have been studied. These multivalent scFvs generally have a higher functional affinity than the monovalent form resulting in better in vivo targeting. Another way to alter the pharmacology of the scFvs is to modify its net charge. Charge-modified scFvs with desired isoelectric points (pI), have been prepared by inserting negatively charged amino acids on the template of the variable region genes. This can help to overcome undesirable elevations in renal uptake seen with most antibody fragments. In conclusion, genetic manipulations of the immunoglobulin molecules are effective means of altering stability, functional affinity, pharmacokinetics, and biodistribution of the antibodies required for the generation of the "magic bullet".  相似文献   

10.
The phage-derived expression, packaging, and processing (PEPP) system was used to target foreign proteins into the bacteriophage capsid to probe the intracapsid environment and the structure of packaged DNA. Small proteins with minimal requirements for activity were selected, staphylococcal nuclease (SN) and green fluorescent protein (GFP). These proteins were targeted into the T4 head by means of IPIII (internal protein III) fusions or CTS (capsid targeting sequence) fusions. Additional evidence is provided that foreign proteins are targeted into T4 by the N-terminal ten amino acid residue consensus CTS of IPIII identified in previous work. Fusion proteins were produced within host bacteria by expression from plasmids or by produc tion from recombinant phage carrying the fusion genes. Packaged fusion proteins CTS IPIII SN, CTS IPIII TSN, CTS IPIII GFP, CTS IPIII TGFP, and CTS GFP, where [symbol: see text] indicates a linkage peptide sequence Leu(Ile)-N-Glu cleaved by the T4 head morphogenetic proteinase gp21 during head maturation, are observed to exhibit intracapsid activity. SN activity within the head is demonstrated by loss of phage viability and by digested genomic DNA patterns visualized by gel electrophoresis when viable phage are incubated in Ca2+. Green fluorescent phage result immediately after packaging GFP produced at 30 degreesC and below, and continue to give green fluorescence under 470 nm light after CsCl purification. Non-fluorescent GFP-fusions are produced in bacteria at 37 degreesC, and phage packaged with these proteins achieve a fluorescent state after incubation for several months at 4 degreesC. GFP-packaged phage and proheads analyzed by fluorescence spectroscopy show that the mature head and the DNA-empty prohead package identical numbers of GFP-fusion proteins. Encapsidated GFP and SN can be injected into bacteria and rapidly exhibit intracellular activity. In vivo SN digestion of encapsidated DNA gives an intriguing pattern of DNA fragments by gel analysis, predominantly a repeat pattern of 160 bp multiples, reminiscent of a nucleosome digestion ladder, This quasi-limit DNA digestion pattern, reached >100-fold more slowly than the loss of titer, is invariant over a range 相似文献   

11.
A system for the expression and purification of histidine-tagged proteins from plants has been developed using a tobacco etch potyvirus (TEV)-derived gene vectors. The vectors offered a convenient polylinker and a choice of histidine tagging at the recombinant proteins' N or C termini. These vectors were utilized for expression of proteins encoded by beet yellows closterovirus (BYV). Approximately 4 micrograms/g of 20-kDa BYV protein was readily isolated from plants systemically infected by hybrid TEV. In contrast, only minute quantities of 22-kDa BYV capsid protein (CP) histidine-tagged at its N or C terminus could be purified. Rapid degradation of the recombinant CP has been implicated in its failure to accumulate in infected plants. Fusion with TEV HC-Pro stabilized the histidine-tagged BYV CP and facilitated purification of the fusion product from infected plants. This same fusion approach was successfully used with the 24-kDa minor BYV CP. The recombinant proteins were recognized by histidine-tag-specific monoclonal antibody in immunoblot analysis. These results demonstrate the utility of a designed series of TEV vectors for expression, detection, and purification of the recombinant proteins and suggest that intrinsic protein stability is a major factor in a recovery of recombinant proteins from plants.  相似文献   

12.
Four new monoclonal antibodies (MAbs) that inhibit human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation were produced by immunizing BALB/c mice with HTLV-1-infected MT2 cells. Immunoprecipitation studies and binding assays of transfected mouse cells showed that these MAbs recognize class II major histocompatibility complex (MHC) molecules. Previously produced anti-class II MHC antibodies also blocked HTLV-1-induced cell fusion. Coimmunoprecipitation and competitive MAb binding studies indicated that class II MHC molecules and HTLV-1 envelope glycoproteins are not associated in infected cells. Anti-MHC antibodies had no effect on human immunodeficiency virus type 1 (HIV-1) syncytium formation by cells coinfected with HIV-1 and HTLV-1, ruling out a generalized disruption of cell membrane function by the antibodies. High expression of MHC molecules suggested that steric effects of bound anti-MHC antibodies might explain their inhibition of HTLV-1 fusion. An anti-class I MHC antibody and a polyclonal antibody consisting of several nonblocking MAbs against other molecules bound to MT2 cells at levels similar to those of class II MHC antibodies, and they also blocked HTLV-1 syncytium formation. Dose-response experiments showed that inhibition of HTLV-1 syncytium formation correlated with levels of antibody bound to the surface of infected cells. The results show that HTLV-1 syncytium formation can be blocked by protein crowding or steric effects caused by large numbers of immunoglobulin molecules bound to the surface of infected cells and have implications for the structure of the cellular HTLV-1 receptor(s).  相似文献   

13.
Compound leaves are seen in many angiosperm genera and are thought to be either fundamentally different from simple leaves or elaborations of simple leaves. The knotted1-like homeobox (knox) genes are known to regulate plant development. When overexpressed in homologous or heterologous species, this family of genes can cause changes in leaf morphology, including excessive leaf compounding in tomato. We describe here an instance of a spontaneously arisen fusion between a gene encoding a metabolic enzyme and a homeodomain protein. We show that the fusion results in overexpression of the homeodomain protein and a change in morphology that approximates the changes caused by overexpression of the same gene under the control of the cauliflower mosaic virus 35S promoter in transgenic plants. Exon-shuffling events can account for the modularity of proteins. If the shuffled exons are associated with altered promoters, changes in gene expression patterns can result. Our results show that gene fusions of this nature can cause changes in expression patterns that lead to altered morphology. We suggest that such phenomena may have played a role in the evolution of form.  相似文献   

14.
In common with other mammalian species, the laboratory rat (Rattus norvegicus) expresses MHC class I molecules that have been categorized as either classical (class Ia) or nonclassical (class Ib). This distinction separates the class Ia molecules that play a conventional role in peptide Ag presentation to CD8 T cells from the others, whose function is unconventional or undefined. The class Ia molecules are encoded by the RT1-A region of the rat MHC, while the RT1-C/E/M region encodes up to 60 other class I genes or gene fragments, a number of which are known to be expressed (or to be expressible). Here we report upon novel MHC class Ib genes of the rat that we have expression cloned using new monoclonal alloantibodies and which we term RT1-U. The products detected by these Abs were readily identifiable by two-dimensional analysis of immunoprecipitates and were shown to be distinct from the class Ia products. Cellular studies of these molecules indicate that they function efficiently as targets for cytotoxic killing by appropriately raised polyclonal alloreactive CTL populations. The sequences of these class Ib genes group together in phylogenetic analysis, suggesting a unique locus or family. The combined serological, CTL, and sequence data all indicate that these products are genetically polymorphic.  相似文献   

15.
16.
Advances in genetic engineering and expression systems have led to a rapid progress in the development of immunoglobulins fused to other proteins. These 'antibody fusion proteins' have novel properties and include antibodies fused to the cytokine interleukin-2. In the present review we describe strategies for construction of these antibody-interleukin-2 fusion proteins and discuss their in vitro and in vivo properties. Antibody-interleukin-2 fusion proteins retain both antibody associated functions such as antigen binding, complement activation and Fc gamma receptor binding as well as interleukin-2 associated functions such as the stimulation of proliferation of CTLL2 cells. In vivo, they produce strong potentiation of the host immune response against any associated antigen. In addition, these novel molecules are able to target tumor cells and produce a specific and effective T cell response capable of eliminating the tumor. These properties suggest that antibody-interleukin-2 fusion proteins will be useful in the diagnosis and/or treatment of human cancer as well as in the potentiation of human response against any associated antigen.  相似文献   

17.
An antibody made against the herpes simplex virus 1 US5 gene predicted to encode glycoprotein J was found to react strongly with two proteins, one with an apparent Mr of 23,000 and mapping in the S component and one with a herpes simplex virus protein with an apparent Mr of 43,000. The antibody also reacted with herpes simplex virus type 2 proteins forming several bands with apparent Mrs ranging from 43,000 to 50,000. Mapping studies based on intertypic recombinants, analyses of deletion mutants, and ultimately, reaction of the antibody with a chimeric protein expressed by in-frame fusion of the glutathione S-transferase gene to an open reading frame antisense to the gene encoding glycoprotein B led to the definitive identification of the new open reading frame, designated UL27.5. Sequence analyses indicate the conservation of a short amino acid sequence common to US5 and UL27.5. The coding sequence of the herpes simplex virus UL27.5 open reading frame is strongly homologous to the sequence encoding the carboxyl terminus of the herpes simplex virus 2 UL27.5 sequence. However, both open reading frames could encode proteins predicted to be significantly larger than the mature UL27.5 proteins accumulating in the infected cells, indicating that these are either processed posttranslationally or synthesized from alternate, nonmethionine-initiating codons. The UL27.5 gene expression is blocked by phosphonoacetate, indicating that it is a gamma2 gene. The product accumulated predominantly in the cytoplasm. UL27.5 is the third open reading frame found to map totally antisense to another gene and suggests that additional genes mapping antisense to known genes may exist.  相似文献   

18.
PSP94 has the potential to be a useful diagnostic marker and therapeutic agent in prostate cancer. Recently, different immunoassay systems for quantitative analysis of PSP94 in clinical samples have been developed, but the epitope structure of PSP94 protein has not been elucidated. In this study, we report an Escherichia coli expression system for recombinant GST-PSP94 fusion protein. GST-PSP94 contains antigenic determinants similar to natural PSP94 protein (determined both by Western blotting experiments and by ELISA) and can be used to study the structure of natural PSP94 antigen. Since GST-PSP94 was expressed in E. coli and purification involved a denaturing process, we propose that the epitope structure of PSP94 is linear and largely dependent on the primary amino acid sequence, rather than conformational structure. This hypothesis was supported by reciprocal competition in ELISA among natural, GST-PSP94 fusion protein, and purified recombinant PSP94 protein. The results demonstrate that the various forms of PSP94 can compete with each other in binding to rabbit PSP94 polyclonal antibody, although the natural PSP94 has a slightly higher affinity. When natural and recombinant PSP94 protein were denatured in vitro with urea and alkali, no effect on the binding to antibody was found. The epitope activity of natural PSP94 was also shown to be resistant to the treatment of detergent and reducing agent. The location of one of the linear epitopes recognized by the PSP94 antibody was determined to be in the N-terminus by using two synthetic peptides representing N- and C-terminal sequences. Competitive ELISA between the N-terminal peptide and PSP94 protein indicate that both natural and GST-PSP94 have similar immunoactive N-termini.  相似文献   

19.
In a recent study, we showed that an immunotoxin (IT) made with a conventional monoclonal antibody targeting the CD3 epsilon moiety of the T-cell receptor (TCR) had a potent, but partial, graft-versus-host disease (GVHD) effect (Vallera et al, Blood 86:4367, 1995). Therefore, in this current study, we determined whether a fusion immunotoxin made with anti-CD3 single-chain Fv (sFv), the smallest unit of antibody recognizing antigen, would have anti-GVHD activity. A fusion protein was synthesized from a construct made by splicing sFv cDNA from the hybridoma 145-2C11 to a truncated form of the diphtheria toxin (DT390) gene. DT390 encodes a molecule that retains full enzymatic activity, but excludes the native DT binding domain. The DT390-anti-CD3sFv hybrid gene was cloned into a vector under the control of an inducible promoter. The protein was expressed in Escherichia coli and then purified from inclusion bodies. The DT390 moiety of the protein had full enzymatic activity compared with native DT and DT390-anti-CD3sFv, with an IC50 of 1 to 2 nmol/L against phytohemagglutinin-stimulated and alloantigen-stimulated T cells. Specificity was shown (1) by blocking the IT with parental anti-CD3 antibody, but not with a control antibody; (2) by failure of DT390-anti-CD3sFv to inhibit lipopolysaccharide-stimulated murine B cells; (3) by failure of an Ig control fusion protein, DT390-Fc, to inhibit T-cell responses; and (4) with in vivo immunohistochemisty studies. GVHD was studied in a model in which C57BL/6 (H-2b)-purified lymph node T cells were administered to major histocompatibility complex (MHC) antigen disparate unirradiated C.B.-17 scid (H-2d) mice to assess GVHD effects in the absence of irradiation toxicity. Flow cytometry studies showed that donor T cells were expanded 57-fold and histopathologic analysis showed the hallmarks of a lethal model of GVHD. Control mice receiving phosphate-buffered saline showed 17% survival on day 80 after bone marrow transplantation, and mice receiving 2 micrograms DT390-Fc fusion toxin control administered in 2 daily doses for 6 days (days 0 through 5) had a 43% survival rate. In contrast, 86% of mice receiving the same dose of DT390-anti-CD3sFv were survivors on day 80, a significant improvement, although survivors still showed histopathologic signs of GVHD. These findings suggest that new anti-GVHD agents can be genetically engineered and warrant further investigation of fusion proteins for GVHD treatment.  相似文献   

20.
We have previously found that T22 ([Tyr5, 12, Lys7]-polyphemusin II) exhibits strong anti-human immunodeficiency virus (HIV) activity comparable to that of 3'-azido-2', 3'-dideoxythymidine (AZT). The inhibition mechanism of T22 on HIV-replication has not been elucidated precisely yet, and hence the target molecules of T22 have not been identified. However, our recent research suggested that T22 exerts its effect by blocking virus-cell fusion at an early stage of HIV infection and that T22 might interact with an HIV envelope protein and/or a T-cell surface protein, both of which are critical for HIV infection. In this paper we demonstrated that T22 binds specifically to both gp120 (an envelope protein of HIV) and CD4 (a T-cell surface protein) and that both bindings can be inhibited by an anti-T22 antibody, using biosensor technology (BIAcoreTM) based on the principles of surface plasmon resonance. Linearization by the BIAcoreTM system (BIAlogue software) and nonlinear least squares analysis by curve fitting with exponential equations showed that both interactions have close dissociation constants (approximately 10(-7) M). The present study suggests that T22 inhibits the virus-cell fusion process through binding to both gp120 and CD4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号