首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of corrosion on the tensile behaviour of the 1.0 wt.% Ce modified AZ91 magnesium alloy was investigated by the immersion of the test bar in 3.5 wt.% NaCl aqueous solution for 0, 12, 40, 108, 204, 372 and 468 h with the subsequent tensile tests in this paper. The fractography was analyzed by scanning electron microscopy. The results show that pitting corrosion should be responsible for the drop of the corrosion residual strength within the testing time. The depth of the corrosion pits was statistically and quantitatively obtained by an optical microscopy and the maximal value was recorded as the extreme depth of the corrosion pit. Furthermore, the corrosion residual strength is linearly dependent on the extreme depth of the corrosion pit, which can be attributed to the loss of cross-sectional area and the emergence of stress concentration caused by the initiation and development of corrosion pits.  相似文献   

2.
In this paper, a protective multilayer coating, with electroless Ni coating as bottom layer and electrodeposited Ni–TiO2 composite coating as top layer, was successfully prepared on AZ91D magnesium alloy by a combination of electroless and electrodeposition techniques. Scanning electron microscopy and X-ray diffraction were employed to investigate the surface, cross-section morphologies and phase structure of coatings, respectively. The electrochemical corrosion behaviors of coatings in 3.5 wt.% NaCl solutions were evaluated by electrochemical impedance spectroscopy, open circuit potential and potentiodynamic polarization techniques. The results showed that the corrosion process of Ni–TiO2 composite coating was mainly composed of three stages in the long-term immersion test in the aggressive media, and could afford better corrosion and mechanical protection for the AZ91D magnesium alloy compared with single electroless Ni coating. The micro-hardness of the Ni–TiO2 composite coating improved more than 5 times than that of the AZ91D magnesium alloy.  相似文献   

3.
钇对AZ91在NaCl溶液中腐蚀的影响   总被引:4,自引:0,他引:4  
通过静态失重法、极化曲线测试研究了钇(Y)对AZ91镁合金腐蚀行为的影响。结果表明加入钇(Y)可在基体内形成块状的YAl2化合物,并使AZ91微观组织得到改善,减缓了在NaCl溶液中的腐蚀。  相似文献   

4.
The main challenge for the application of magnesium and its alloy as degradable biomaterials lies in their high degradation rates in physiological environment. In the present work, the biodegradable behavior of a patent magnesium alloy Mg–Nd–Zn–Zr (JDBM) and a reference alloy AZ31 was systematically investigated in Hank's physiological solution. The corrosion rate of JDBM (0.28 mm/year) was much slower than that of AZ31 (1.02 mm/year) in Hank's solution for 240 h. After corrosion products were removed, smooth surface of the JDBM was observed by SEM observation compared to many deep pits on the surface of AZ31. Open-circuit potential and potentiodynamic polarization results manifested that pitting corrosion did not occurred on the surface of JDBM at the early period of immersion time due to the formation of a more protective and compact film layer suggested by electrochemical impedance spectroscopy study. The corrosion rate of magnesium alloys was found to slow down in dynamic corrosion in comparison with that in the static corrosion. This provided the basis for scientific evaluation of in vitro and in vivo corrosion behavior for degradable biomagnesium alloy. The present results suggest that the new patent magnesium alloy JDBM is a promising candidate as degradable biomaterials and is worthwhile for further investigation in vivo corrosive environment.  相似文献   

5.
The environmental behavior of die-cast magnesium alloy MRI230D designated for high-temperature applications was evaluated in comparison with regular AZ91D alloy. The microstructure examination was carried out using SEM, TEM, and X-ray diffraction analysis; the corrosion performance in 3.5% NaCl solution was evaluated by immersion test, salt spray testing, potentiodynamic polarization analysis, and stress corrosion behavior by Slow Strain Rate Testing (SSRT). Although the general corrosion resistance of MRI230D was slightly improved compared to that of AZ91D alloy its stress corrosion resistance was relatively reduced. The variations in the environmental behavior of the two alloys were mainly due to the differences in their chemical composition and microstructure after die casting. In particular, the differences were related to the reduced Al content in MRI230D and the addition of Ca to this alloy, which consequently affected its relative microstructure and electrochemical characteristics.  相似文献   

6.
Bioactive ceramics coated magnesium alloys with a combination of suitable mechanical strength and adjustable corrosion resistance are desired for biodegradable implants. In this study, a dense bioglass coated magnesium alloy was fabricated by uniaxial pressing and microwave hybrid heating technique. The microstructure, bond strength and corrosion behavior of the samples were evaluated by means of scanning electron microscopy, X-ray diffraction, tensile bond test, electrochemical and immersion test. It was shown that uniaxial pressing conducted at the glass transition temperature significantly densified the sol–gel derived bioglass coating, which was free of pores and micro-cracks. The compact coating structure combined with mild interfacial stress not only improved the cohesion/adhesion strength (25.8 ± 2.6 MPa) but also enhanced corrosion resistance by retarding the penetration of corrosive solution. Furthermore, the formed CaP precipitates on the surface of the coating would provide another protection for the magnesium alloy to some extent.  相似文献   

7.
The deformation behavior of AZ91 magnesium alloy has been investigated using uniaxial compression tests at a temperature range of 100–300 °C. The different processing routes including homogenization treatment, hot rolling and annealing have been employed to study the effect of initial microstructure on the compressive mechanical response of the AZ91 alloy. The results show that the hot-rolled material presents an enhanced compressive workability at temperatures as low as 100 °C. The experimental alloy exhibit dynamic recrystallization during compression in any of the initial microstructures. The maximum and minimum DRX (dynamic recrystallization) fraction has been obtained in hot-rolled and homogenized conditions, respectively. The recrystallized fraction increases with raising the temperature. In addition the effect of initial microstructure on the peak stress diminishes with increasing temperature while its effect on the peak strain remains remarkable. The softening fraction has been increased with temperature, where a pronounced effect has been recorded in the case of homogenized (un-rolled) material.  相似文献   

8.
A semi-solid processed (thixomolded) Mg–9Al–1Zn magnesium alloy (AZ91D) was subjected to friction stir welding (FSW), aiming at evaluating the weldability and fatigue property of the FSW joint. Microstructure analysis showed that a recystallized fine-grained microstructure was generated in the nugget zone (NZ) after FSW. The yield strength, ultimate tensile strength, and elongation of the FSW joint were obtained to be 192 MPa, 245 MPa, and 7.6%, respectively. Low-cycle fatigue tests showed that the FSW joint had a fatigue life fairly close to that of the BM, which could be well described by the Basquin and Coffin-Manson equations. Unlike the extruded magnesium alloys, the hysteresis loops of FSW joint of the thixomolded AZ91D alloy were basically symmetrical, while the non-linear or pseudoelastic behavior was still present. The FSW joint was observed to fail in the BM section rather than in the NZ. Fatigue crack initiated basically from the pores at or near the specimen surface, and crack propagation was mainly characterized by fatigue striations along with the presence of secondary cracks.  相似文献   

9.
The oxidation behaviors of AZ91D magnesium alloy in 1,1,1,2-tetrafluoroethane/air atmospheres at temperatures between 660 °C and 760 °C have been studied. The experimental results show that with the increase of melt temperature, the oxidation rate of molten AZ91D magnesium alloy in 1,1,1,2-tetrafluoroethane/air atmospheres increased and the oxidation kinetics changed from parabolic law to linear law. On the other hand, the amount of MgF2 in the oxide film formed on AZ91D decreased, and the amount of MgO increased. The effect of melt temperature on the oxidation behaviors is primarily related to the relative content of MgO and MgF2 in the film, as well as the diffusion rate and the evaporation rate of magnesium through the film.  相似文献   

10.
AZ91D镁合金化学镀Ni-P/Ni-W-P双层镀层研究   总被引:1,自引:0,他引:1  
为了提高镁合金的耐磨耐蚀性,研究了一种镁合金直接化学镀Ni-P/Ni-W-P双层镀层的方法.采用扫描电镜(SEM)和X-射线衍分析射仪(XRD)分析了镀层的微观结构.对镀层进行了极化曲线分析,并进行了盐酸腐蚀试验和结合力试验.结果表明,该复合镀层组织致密无孔,具有较高的显微硬度和高耐蚀性.镀层硬度可达622HKV,试样在10%的HCl溶液中可保持近3h不腐蚀基体,对镁合金起到很好的保护作用.  相似文献   

11.
Abstract

Weight reduction to improve automobile fuel economy has triggered renewed interest in magnesium. The effects of Ca/Sr separate and composite additions to AZ91D magnesium alloy on its microstructure and mechanical properties have been investigated. The results indicate Ca can refine both the grain and eutectic phase of AZ91D magnesium alloy. Sr hampers microstructure refinement when composite Ca/Sr additions are made. In addition, separate Ca additions to AZ91D magnesium alloy increase yield strength but decrease elongation of this alloy. By adjusting the Ca/Sr composite proportions, additions to AZ91D magnesium alloy are able to improve both microstructure and mechanical properties of the alloy.  相似文献   

12.
In this study, a magnesium alloy (AZ91) was coated with calcium phosphate using potentiostatic pulse-potential and constant-potential methods and the in vitro corrosion behaviour of the coated samples was compared with the bare metal. In vitro corrosion studies were carried out using electrochemical impedance spectroscopy and potentiodynamic polarization in simulated body fluid (SBF) at 37 °C. Calcium phosphate coatings enhanced the corrosion resistance of the alloy, however, the pulse-potential coating performed better than the constant-potential coating. The pulse-potential coating exhibited ~ 3 times higher polarization resistance than that of the constant-potential coating. The corrosion current density obtained from the potentiodynamic polarization curves was significantly less (~ 60%) for the pulse-deposition coating as compared to the constant-potential coating. Post-corrosion analysis revealed only slight corrosion on the pulse-potential coating, whereas the constant-potential coating exhibited a large number of corrosion particles attached to the coating. The better in vitro corrosion performance of the pulse-potential coating can be attributed to the closely packed calcium phosphate particles.  相似文献   

13.
In the present paper, thermo-mechanical fatigue (TMF) and low cycle fatigue (LCF) or isothermal fatigue (IF) lifetimes of a cast magnesium alloy (the AZ91 alloy) were studied. In addition to a heat treatment process (T6), several rare elements were added to the alloy to improve the material strength in the first step. Then, the cyclic behavior of the AZ91 was investigated. For this objective, strain-controlled tension–compression fatigue tests were carried out. The temperature varied between 50 and 200 °C in the out-of-phase (OP) TMF tests. The constraint factor which was defined as the ratio of the mechanical strain to the thermal strain, was set to 75%, 100% and 125%. For LCF tests, mechanical strain amplitudes of 0.20%, 0.25% and 0.30% were considered at constant temperatures of 25 and 200 °C. Experimental fatigue results showed that the cyclic hardening behavior occurred at the room temperature in the AZ91 alloy. At higher temperatures, this alloy had a brittle fracture. But also, it was not significantly clear that the cyclic hardening or the cyclic softening behavior would be occurred in the material. Then, the high temperature LCF lifetime was more than that at the room temperature. The OP-TMF lifetime was the least value in comparison to that of LCF tests. At the end of this article, two energy-based models were applied to predict the fatigue lifetime of this magnesium alloy.  相似文献   

14.
用金相显微镜、扫描电镜和静态质量损失法对AZ91-xNd镁合金(x=1.1%,1.4%,1.9%)的微观组织和腐蚀性能进行表征,研究了Nd对AZ9l镁合金显微组织和耐腐蚀性能的影响.结果表明:稀土Nd的添加明显细化了合金的组织,使半连续网状β(Mgl7Al12)相变为细小的长条状,且分布更加均匀.在合金中还生成了颗粒状...  相似文献   

15.
This paper deals the effect of Sn and Y additions on the microstructure, mechanical and corrosion properties of AZ91 alloy. It is found that by the addition of Sn, the formation and growth of discontinuous precipitate get suppressed and new intermetallic Mg2Sn phase is formed. In the case of Y addition together with Sn, the grain size gets refined, the volume of Mg17Al12 gets decreased and new intermetallic Al2Y phase is observed. Improved room and high temperature tensile properties are obtained in as-cast and aged Sn and Y added AZ91 alloy. However, maximum properties are obtained for the alloy having combined addition of 0.5 wt.% Sn and 0.9 wt.% Y. Improved corrosion resistance is also noticed with the addition of Sn and Y elements.  相似文献   

16.
In order to overcome the problem of the corrosion resistance of AZ31 magnesium alloy, the nanocrystalline Al2O3 film was deposited on AZ31 magnesium alloy by double cathode glow-discharge plasma technique. The microstructure, chemical composition and elemental chemical state of the sputter-deposited nanocrystalline Al2O3 film were analyzed by means of scanning electron microscopy equipped with an energy dispersive spectroscope, X-ray diffraction), transmission electron microscope and X-ray photoelectron spectroscopy. The results indicated that the sputter-deposited nanocrystalline Al2O3 film consisted of single θ-Al2O3 phase with average grain size about 60 nm. The hardness and the elastic modulus of the as-deposited nanocrystalline Al2O3 film were about 17.21 GPa and 217 GPa measured by nanoindentation instrument, respectively. The corrosion behavior of the sputter-deposited nanocrystalline Al2O3 film in 3.5%NaCl solution was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy. The amount of porosity for the sputter-deposited nanocrystalline Al2O3 film calculated by two electrochemical methods was equal to 0.0086% and 0.168%, respectively. The sputter-deposited nanocrystalline Al2O3 film exhibited excellent corrosion resistance, which was attributed to its dense enough structure to prevent magnesium alloy from corrosion in aggressive solutions.  相似文献   

17.
A series of reheating-isothermal holding experiments and compression tests were conducted on pristine magnesium alloy AZ91 extruded by equal channel angular extrusion(ECAE) and Si C particles(a volume fraction of 15%) reinforced AZ91 composite(AZ91-SiC_p) by regular extrusion. Dissolution of eutectic compounds and partial melting of the α-Mg matrix occurred during the reheating of these materials. Spherical semisolid slurries of these materials were obtained when the reheating temperature and isothermal holding time were 550?C and 20 s, respectively. The presence of SiC_p in AZ91-Si Cpnot only caused lower liquid fractions of semisolid slurries but also resulted in higher values of flow stress during semisolid compression tests. Both AZ91 alloy and AZ91-Si Cpcomposite exhibited better thixoforming properties at high temperatures. Segregation of Si Cpdid not occur during thixoforming of AZ91-Si Cpcomposite after an isothermal holding at semisolid temperatures for 20 s.  相似文献   

18.
The creep resistance of AZ91D alloy has been studied in uniaxial compression tests at temperature ranges from 275 °C to 325 °C. The initial microstructure of the alloy consists of α phase and β phase precipitated in the grain boundary. The minimum creep rate dependence on applied stress and the temperature is also analyzed in detail. We find that the stress exponent n is close to the theoretical values (3 or 5) and the activation energy Q for creep varies from 121 kJ/mol to 171 kJ/mol. Creep could be controlled by high-temperature climb and cross-slip of dislocation at different temperatures.  相似文献   

19.
The effects of Ca addition on the microstructure and mechanical properties of AZ91 magnesium alloy have been studied. The results show that the Ca addition can refine the microstructure, reduce the quantity of Mg17Al12 phase, and form new Al2Ca phase in AZ91 magnesium alloy. With the Ca addition, the tensile strength and elongation of AZ91magnesium alloy at ambient temperature are reduced, whereas Ca addition confers elevated temperature strengthening on AZ91 magnesium alloy. The tensile strength at 150°C increases with increasing Ca content. The impact toughness of AZ91magnesium alloy increases, and then declines as the Ca content increases. The tensile and impact fractographs exhibit intergranular fracture features, Ca addition changes the pattern and quantity of tearing ridge, with radial or parallel tearing ridge increasing, tensile strength, elongation and impact toughness reduce.  相似文献   

20.
镁合金微弧氧化陶瓷膜的微观结构、相成分和耐腐蚀性能   总被引:6,自引:1,他引:6  
为获得耐腐蚀性优良的镁合金表面膜层,在含5 g/L硅酸钠、2 g/L磷酸钠和1 g/L氢氧化钠的复合溶液中,用自制设备对AZ91D镁合金进行了微弧氧化.利用扫描电镜和X射线衍射分析了AZ91D 镁合金表面微弧氧化陶瓷膜的表面形貌、截面结构和相组成.结果表明:AZ91D 微弧氧化陶瓷膜由疏松层和致密层组成,疏松层陶瓷膜疏松,厚度较大,且存在一些孔洞;致密层陶瓷膜与基体金属结合紧密,陶瓷膜主要由MgO,Mg2SiO4,Mg3(PO4)2和MgAl2O4组成.在3.5%的NaCl溶液中,微弧氧化陶瓷膜的自腐蚀电位为-1 390 mV,而镁合金基体的为-1 540 mV,表明经微弧氧化处理后AZ91D 镁合金的耐蚀性有较大提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号