首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on a comparative study of tribological and corrosion behavior of plasma nitrided 34CrNiMo6 low alloy steel under modern hot wall condition and conventional cold wall condition. Plasma nitriding was carried out at 500 °C and 550 °C with a 25% N2 + 75% H2 gas mixture for 8 h. The wall temperature of the chamber in hot wall condition was set to 400 °C. The treated specimens were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), microhardness and surface roughness techniques. The wear test was performed by pin-on-disc method. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were also used to evaluate the corrosion resistance of the samples. The results demonstrated that in both nitriding conditions, wear and corrosion resistance of the treated samples decrease with increasing temperature from 500 °C to 550 °C. Moreover, nitriding under hot wall condition at the same temperature provided slightly better tribological and corrosion behavior in comparison with cold wall condition. In consequence, the lowest friction coefficient, and highest wear and corrosion resistance were found on the sample treated under hot wall condition at 500 °C, which had the maximum surface hardness and ε-Fe2–3N phase.  相似文献   

2.
The wear behaviour of plasma sprayed coating and hard chrome plating on AISI 304 austenitic stainless steel substrate is experimentally investigated in unlubricated conditions. Experiments were conducted at different temperatures (room temp, 100 °C, 200 °C and 300 °C) with 50 N load and 1 m/s sliding velocity. Wear tests were carried out by dry sliding contact of EN-24 medium carbon steel pin as counterpart on a pin-on-disc wear testing machine. In both coatings, specimens were characterised by hardness, microstructure, coating density and sliding wear resistance. Wear studies showed that the hard chromium coating exhibited improved tribological performance than that of the plasma sprayed WC–Co coating. X-ray diffraction analysis (XRD) of the coatings showed that the better wear resistance at high temperature has been attributed to the formation of a protective oxide layer at the surface during sliding. The wear mechanisms were investigated through scanning electron microscopy (SEM) and XRD. It was observed that the chromium coating provided higher hardness, good adhesion with the substrate and nearly five times the wear resistance than that obtained by uncoated AISI 304 austenitic stainless steel.  相似文献   

3.
In this study, the effect of heat treatment on the tribological properties of Al–Cu–Mg alloy reinforced with 4 wt.% SiC particles with 650 nm average particle size has been investigated. The age hardening process consists of solution treatment at 540 °C for 6 h, followed by water quenching and ageing at different temperatures of 175, 200 and 225 °C with soaking times of 3, 6 and 9 h. Hardness measurements were applied to monitor the precipitation effect and the aged samples were then subjected to wear tests under dry sliding conditions against steel and alumina counterfaces. The results showed that the reinforced material exhibits an enhanced ageing response compared to the unreinforced material in the same heat treatment conditions. The rate of ageing increases with increasing temperature; however, ageing at 200 and 225 °C for more than 6 h resulted in over-ageing. The best combinations for the enhanced tribological properties for the composite material were selected as 6 h ageing at 225 °C. The precipitation effect for this alloy can be enhanced by the small addition of SiC nanoparticles. Having a small amount of nanoSiC particles with fine precipitates inside the matrix further increases the hardness and wear properties.  相似文献   

4.
The structure, composition, and mechanical properties of nanostructured titanium carbide (TiC) coatings deposited on H11 hot-working tool steel by pulsed-DC plasma assisted chemical vapor deposition at three different temperatures are investigated. Nanoindentation and nanoscratch tests are carried out by atomic force microscopy to determine the mechanical properties such as hardness, elastic modulus, surface roughness, and friction coefficient. The nanostructured TiC coatings prepared at 490 °C exhibit lower friction coefficient (0.23) than the ones deposited at 470 and 510 °C. Increasing the deposition temperature reduces the Young's modulus and hardness. The overall superior mechanical properties such as higher hardness and lower friction coefficient render the coatings deposited at 490 °C suitable for wear resistant applications.  相似文献   

5.
Laser-clad composite coatings on the Ti6Al4V substrate were heat-treated at 700, 800, and 900 °C for 1 h. The effects of post-heat treatment on the microstructure, microhardness, and fracture toughness of the coatings were investigated by scanning electron microscopy, X-ray diffractometry, energy dispersive spectroscopy, and optical microscopy. The wear resistance of the coatings was evaluated under dry reciprocating sliding friction at room temperature. The coatings mainly comprised some coarse gray blocky (W,Ti)C particles accompanied by the fine white WC particles, a large number of black TiC cellular/dendrites, and the matrix composed of NiTi and Ni3Ti; some unknown rich Ni- and Ti-rich particles with sizes ranging from 10 nm to 50 nm were precipitated and uniformly distributed in the Ni3Ti phase to form a thin granular layer after heat treatment at 700 °C. The granular layer spread from the edge toward the center of the Ni3Ti phase with increasing temperature. A large number of fine equiaxed Cr23C6 particles with 0.2–0.5 μm sizes were observed around the edges of the NiTi supersaturated solid solution when the temperature was further increased to 900 °C. The microhardness and fracture toughness of the coatings were improved with increased temperature due to the dispersion-strengthening effect of the precipitates. Dominant wear mechanisms for all the coatings included abrasive and delamination wear. The post-heat treatment not only reduced wear volume and friction coefficient, but also decreased cracking susceptibility during sliding friction. Comparatively speaking, the heat-treated coating at 900 °C presented the most excellent wear resistance.  相似文献   

6.
《Vacuum》2008,82(11-12):1439-1442
W–S–C films were deposited by magnetron sputtering in an Ar atmosphere with a Ti interlayer. A carbon target with several pellets of WS2 incrusted in the zone of the preferential erosion was used. The number of pellets was changed to modify the carbon content in the films, which varied from 29 up to 70 at%. Doping W–S films with carbon led to a substantial increase of the hardness in the range 4–10 GPa; the maximum of hardness was obtained for coatings with the carbon content of 40 at%. X-ray diffraction (XRD) patterns showed that there was a loss of crystallinity with the increase of the carbon content in the film.The coatings were tested by pin-on-disk from room temperature (RT) up to 400 °C. At RT, the friction coefficient was in the range 0.2–0.30. At temperatures higher than 100 °C, the friction is below 0.05 for all compositions. The tribological behavior of the coatings with increasing temperatures depended on the films carbon content. For low-carbon content up to 40%, the wear rate was almost independent of the temperature up to 300 °C, while it increased dramatically in the case of the coatings with high-carbon content. In general, the limiting temperature for W–S–C coatings is 400 °C.  相似文献   

7.
Rods made of continuous carbon fibers are being extensively used as structural materials in light weight micro-air vehicles owing to their excellent specific modulus and strength. Further, they possess excellent tribological characteristics – low friction and wear coupled with high conductivity making them an ideal reinforcement in developing light weight, high strength aluminum based metal matrix composites. In the last three decades, researchers have focused mainly on the study of mechanical and tribological behavior of discontinuous carbon fiber reinforced metal matrix composites. However, no information is available regarding the tribological behavior of carbon fibers rod reinforced metal matrix composites, although it is interesting and will result in expanding the applications of metal matrix composites (MMC) where tribological failures are expected.In the light of the above, the present work focuses on development of innovative Al6061–carbon fiber rods composites by casting route and assessing their tribological characteristics. Carbon fiber rods of 4 mm and 6 mm diameters were surface sensitized to achieve electro less nickel coating. Copper plating on the electro less nickel coated carbon fiber rods were carried out. The copper plated carbon fiber rods were arranged in cylindrical array in the metallic mold to which molten Al6061 alloy after degassing was poured at a temperature of 700 °C. The developed innovative composites were subjected to density tests, microstructure studies, hardness, friction and wear tests. A pin on disk configuration was used with hardened steel as the counter face. Load was varied from 20 N to 60 N while the sliding velocity was varied between 0.12 m/s and 0.62 m/s. Scanning electron microscopy (SEM) studies on worn surfaces and wear debris have been carried out to validate the wear mechanism. The developed innovative composites (11 Vol.% & 25 Vol.%) have exhibited lower coefficient of friction and wear rates when compared with matrix alloy.  相似文献   

8.
The influences of strain amplitude (10?5–10?4) and temperature (25 °C–500 °C) on the internal friction of a cold-drawn and solution treated Fe-19Mn alloy were investigated. The internal friction was measured using reversal torsion pendulum and multifunction internal friction equipment. The microstructure was observed using scanning electron microscopy. The phase transformation temperatures were determined using differential scanning calorimetry. The results indicated that the internal friction of the solution treated alloy was related to strain amplitude, which could be explained using the movement of Shockley partial dislocations (bowing out and breaking away). But the internal friction of the cold-drawn alloy was independent of strain amplitude because of high density dislocations formed by cold forming. Moreover, when the temperature was changed between 25 °C and 500 °C, the internal friction of the cold-drawn alloy increased slowly from 25 °C to 375 °C, and then increased quickly from 375 °C to 500 °C. However, for the solution treated alloy, there was an internal friction peak at about 210 °C in the heating process (from 25 °C to 500 °C), and there was another internal friction peak at about 150 °C in the cooling process. These peaks could be explained using the heat-assisted movement of dislocations.  相似文献   

9.
Silver vanadate (AgVO3) nanowires were synthesized by hydrothermal method and self-lubricating NiAl/Mo-AgVO3 composites were fabricated by powder metallurgy technique. The composition and microstructure of NiAl/Mo-based composites were characterized and the tribological properties were investigated from room temperature to 900 °C. The results showed that NiAl/Mo-based composites were consisted of nanocrystalline B2 ordered NiAl matrix, Al2O3, Mo2C, metallic Ag and vanadium oxide phase. The appearance of metallic Ag and vanadium oxide phase can be attributed to the decomposition of AgVO3 during sintering. Wear testing results confirmed that NiAl/Mo-based composites have excellent tribological properties over a wide temperature range. For example, the friction coefficient and wear rate of NiAl/Mo-based composites containing AgVO3 were significantly lower than the composites containing only metallic Mo or AgVO3 lubricant when the temperature is above 300 °C, which can be attributed to the synergistic lubricating action of metallic Mo and AgVO3 lubricants. Furthermore, Raman results indicated that the composition on the worn surface of NiAl-based composites was self-adjusted after wear testing at different temperatures. For example, Ag3VO4 and Fe3O4 lubricants were responsible for the improvement of tribological properties at 500 °C, AgVO3, Ag3VO4 and molybdate for 700 °C, and AgVO3 and molybdate for 900 °C of NiAl-based composites with the addition of metallic Mo and AgVO3.  相似文献   

10.
The wear behavior of AZ91 and AZ91 + 3 wt% RE magnesium alloys was investigated under a normal load of 20 N at the wear testing temperatures of 25–250 °C and sliding speeds of 0.4 and 1 m s−1. As the sliding speed increased from 0.4 to 1 m s−1 at the wear temperature of 25 °C, the wear rates of AZ91 and AZ91 + 3 wt% RE alloys decreased by about 8% and 60%, respectively. With an increase in the wear temperature to 100 °C, the wear rate of AZ91 alloy was reduced by 58% at a sliding speed of 0.4 m s−1, while the wear rate was sharply increased at a sliding speed of 1 m s−1. At higher wear temperatures, the wear of the AZ91 alloy at both sliding speeds soared as a result of the softening of β-Mg17Al12 phase. However, the wear rate of AZ91 + 3 wt% RE alloy showed a minimum at the wear temperatures of 100 and 200 °C at sliding speeds of 1 and 0.4 m s−1, respectively. Superior wear behavior of AZ91 + 3 wt% RE at the elevated temperatures could be attributed to its higher thermal stability and strength. Furthermore, a rise in sliding speed led to a 55% reduction in the wear rate of AZ91 + 3 wt% RE alloy at the wear temperature of 100 °C due to the formation of stable oxide layers on the wear surface.  相似文献   

11.
The effect of heat treatment on the microstructure, hardness and rollability of V55Ti30Ni15 alloy membranes has been investigated in this study. The microstructure resulting from different heat treatment conditions has a great influence on hardness. Fine NiTi particles precipitate from the supersaturated V-matrix solid solution at temperatures above 600 °C, increase in quantity until 800 °C, then dissolve back into the V-matrix with a further increase in temperature up to 950 °C. The resultant hardness decreases with temperature until 800 °C, and then increases from 800 to 950 °C. In the present study, a comparison has been made between the rollability of the as-cast and the heat treated state selected for deformation at different rolling temperatures. The percent reduction in thickness of the heat-treated alloy (800 °C/18 h) has been found to be up to 30% higher than that of the as-cast alloy, even at room temperature (cold rolling).  相似文献   

12.
An investigation is conducted on the effect of the hybrid of multi-wall carbon nanotubes (MWCNTs) and graphene oxide (GO) nanosheets on the tribological performance of epoxy composites at low GO weight fractions of 0.05–0.5 phr. The MWCNT amount is kept constant at 0.5 phr, which is typical for CNT/epoxy composites with enhanced mechanical properties. Friction and wear tests against smooth steel show that the introduction of 0.5 phr MWCNTs into the epoxy matrix increases the friction coefficient and decreases the specific wear rate. When testing the tribological performance of MWCNT/GO hybrids, it is shown that at a high GO amount of 0.5 phr, the friction coefficient is decreased below that of the neat matrix whereas the wear rate is increased above that of the neat matrix. At an optimal hybrid formulation, i.e., 0.5 phr MWCNTs and 0.1 phr GO, a further increase in the friction coefficient and a further reduction in the specific wear rate are observed. The specific wear rate is reduced by about 40% down to a factor of 11 relative to the neat epoxy when the GO content is 0.1 phr.  相似文献   

13.
Yttria-stabilized zirconia (YSZ) nanocomposite coatings consisting of silver and molybdenum were produced by a hybrid process of filtered vacuum arc, magnetron sputtering and pulsed laser depositions for tribological investigations at different temperatures. The coatings with 24 at.% Ag and 10 at.% Mo contents showed a friction coefficient of 0.4 or less for all temperatures from 25 to 700 °C. The wear scar surfaces and coating cross-sections were studied using scanning electron, transmission electron, scanning transmission electron and focused ion beam microscopes, which also provided the information on chemical composition distributions of silver and molybdenum along with microstructure features. It was demonstrated that silver diffusion and coalescence on surfaces played an important part in the high-temperature lubrication mechanism of the YSZ–Ag–Mo coatings. Silver was found to be an effective lubricant at temperatures below 500 °C and its coalescence on the surface isolated molybdenum inside coatings from ambient oxygen. Lubricious oxides of molybdenum were formed and lubricated at temperatures above 500 °C when the silver was worn off the contact surface. For silver containment inside the coating at high temperatures, a multilayer architecture was built by inserting a TiN diffusion barrier layer in the composite coatings. Microscopic observations showed that this barrier layer prevented silver exit to the coating surface. At the same time, this enabled a subsequent lateral lubricant supply toward a wear scar location where the diffusion barrier layer was worn through and/or for a next thermal cycle. The multilayer coating maintained a friction coefficient of 0.4 or less for more than 25,000 cycles, while the monolithic coating lasted less than 5000 cycles. In addition, a TiN surface barrier layer with pinholes was deposited on the YSZ–Ag–Mo composite surface to control vertical silver diffusion. With this coating design, the coating wear lifetime was significantly increased beyond 50,000 cycles.  相似文献   

14.
To improve the wear performance of SiC coating for C/C composites at elevated temperatures, the grain was refined by adding small amounts of titanium, in the raw powders for preparing this coating. The related microstructure and mechanical characteristics were investigated by scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy and nano-indention. The results show that the grain size of SiC coating decreased from ∼30 μm to ∼5 μm due to the addition of grain refiner. TiC formed by reacting titanium with graphite, can act as perfect heterogeneous nucleus for the nucleation and growth of β-SiC. The wear resistance and fracture toughness of SiC coating was improved by grain refinement. However, the increasing interfaces increased the friction resistance and resulted in the high friction coefficient of fine-grained coating at room temperature. As the temperature rose, oxides layer formed on the surface of fine-grained coating, which can reduce the adhesive wear and decrease the friction coefficient. The fine-grained coating exhibited relative low friction coefficient of ∼0.41 owing to a compact silica film formed on the worn surface at 600 °C, and the wear was dominated by plastic deformation and shear of silica film. The wear of coarse-grained coating was controlled by the fracture of SiC at high temperature.  相似文献   

15.
Semimetallic friction composites (SMFCs) consisting of epoxidized natural rubber (50 mol% epoxidation, ENR 50), alumina nanoparticles, steel wool, graphite, and benzoxazine were prepared via melt mixing using a Haake internal mixer at 90 °C and 60 rpm rotor speed. The composites were vulcanized using sulfur and electron-beam (EB) crosslinking systems. The SMFC samples were then subjected to friction, hardness, porosity, and density tests to determine their friction and wear properties. The morphological changes in the samples were also observed under a scanning electron microscope. The friction and wear properties of SMFCs crosslinked via the EB irradiation and sulfur vulcanization systems were compared. The friction coefficients in normal and hot conditions, as well as the hardness and density of the irradiated SMFC, were higher than those of the sulfur-vulcanized samples at all applied doses. The porosity of the irradiated SMFC at 50, 100, and 150 kGy was higher than that of the sulfur-vulcanized samples; however, the irradiated SMFC exhibited a descending trend at 200 kGy. On the other hand, the specific wear rates of the irradiated samples were lower than those of the sulfur-vulcanized samples at all applied doses. The sample crosslinked via EB irradiation at 150 kGy exhibited the greater tribological property compared with the sulfur-vulcanized SMFC, as indicated by the higher friction coefficient (approximately 0.461) and lower wear rate achieved at 150 kGy irradiation.  相似文献   

16.
NiAl matrix self-lubricating composites with MoS2 and Ti3SiC2 lubricants were prepared by spark plasma sintering. The tribological behaviors of the NiAl–Ti3SiC2–MoS2 composites against Si3N4 were investigated from room temperature to 800 °C. The results showed that the composites exhibited excellent self-lubricating and anti-wear properties over a wide temperature range. At 400 °C, the composites containing 5Ti3SiC2–5MoS2 (wt.%) had a very low friction coefficient of about 0.13 and a low wear rate of 4.5 × 10−5 mm3 N−1 m−1. MoS2 played the main role of lubrication at low temperatures, while Ti3SiC2 was responsible for low friction at high temperatures. Ti3SiC2 and MoS2 lubricants in the NiAl–Ti3SiC2–MoS2 composites showed the excellent synergetic lubricating effect over a wide temperature range from room temperature to 800 °C.  相似文献   

17.
Ni3Al matrix self-lubricating composites (NMSC) containing varied amounts of WS2, Ag and hBN (WAh) with weight ratio of 1:1:1 were fabricated by in situ technique using spark plasma sintering. The friction and wear properties of NMSC against the commercial Si3N4 ceramic ball at the load of 10 N and sliding speed of 0.234 m/s for 80 min from room temperature to 800 °C were investigated. The results showed that the tribological properties of NMSC strongly depended on the addition content of WAh. Moreover, NMSC with 15 wt.% WAh and 5 wt.% TiC exhibited the relatively lower friction coefficients and the less wear rates from RT to 800 °C. The excellent tribological behavior of NMSC with 15 wt.% WAh and 5 wt.% TiC was attributed to the synergetic action of composite lubricants of WAh and reinforced phase of TiC.  相似文献   

18.
The friction and wear behaviors of B4C/6061Al composite were studied by considering the effect of sliding time, applied load, sliding velocity and heat treatment. The results show that, when the sliding time, applied load and sliding velocity reach critical values (namely 120 min, 30 N and 240 r min−1, respectively), the mass loss and friction coefficient (COF) increase significantly. Severe delamination wear is the main wear mechanism after sliding for 120 min and under an applied load of 30 N. While fretting wear happens at a sliding velocity of 240 r min−1. After solution-treated at 550 °C for 1 h and then aged at 180 °C for 15 h, the composite shows the highest wear resistance owing to the precipitation of β″ (Mg2Si) phases in the matrix and the strong interface bonding between B4C particles and the matrix alloy.  相似文献   

19.
In the present study, diffusion bonding of titanium alloy and micro-duplex stainless steel with a nickel alloy interlayer was carried out in the temperature range of 800–950 °C for 45 min under the compressive stress of 4 MPa in a vacuum. The bond interfaces were characterised by scanning electron microscopy, electron probe microanalyzer and X-ray diffraction analysis. The layer wise Ni3Ti, NiTi and NiTi2 intermetallics were observed at the nickel alloy/titanium alloy interface and irregular shaped particles of Fe22Mo20Ni45Ti13 was observed in the Ni3Ti intermetallic layer. At 950 °C processing temperature, black island of β-Ti phase has been observed in the NiTi2 intermetallics. However, the stainless steel/nickel alloy interface indicates the free of intermetallics phase. Fracture surface observed that, failure takes place through the NiTi2 phase at the NiA–TiA interface when bonding was processed up to 900 °C, however, failure takes place through NiTi2 and β-Ti phase mixture for the diffusion joints processed at 950 °C. Joint strength was evaluated and maximum tensile strength of ∼560 MPa and shear strength of ∼415 MPa along with ∼8.3% ductility were obtained for the diffusion couple processed at 900 °C for 45 min.  相似文献   

20.
Both absorption and release of synovial fluid components lubricate the porous natural meniscus, whereas only adsorption can lubricate non-porous meniscus prostheses. The aim of this study was to establish the adsorption characteristics of the synovial fluid proteoglycan 4 (PRG4) and albumin on modified and unmodified polycarbonate urethane (PCU) and determine the effects on the coefficient of friction. PCU was modified with surface-tethered C18 chains (mPCU). Self-assembled monolayers (SAM) on gold were also used to generate higher and lower hydrophobicities. Protein adsorption and coefficients of friction were measured by quartz crystal microbalance and colloidal probe atomic force microscope. PRG4 formed a thick viscoelastic layer and significantly decreased the coefficient of friction on PCU and mPCU, with an exceptionally low coefficient of friction measured on mPCU (0.02 ± 0.02) due to its soft surface. Albumin formed a thin rigid layer with a much higher coefficient of friction on mPCU (1.14 ± 0.19). Albumin blocked PRG4 adsorption when simultaneously added to PCUs, and coefficients of friction of 0.48 ± 0.24 (PCU) and 0.49 ± 0.17 (mPCU) were measured. Albumin adsorption on hydrophobic substrates (water contact angle ⩾70° ± 4°) dramatically increased the coefficient of friction (3.41 ± 1.21 on hydrophobic SAM), indicating that increased hydrophobicity through hydrocarbon surface modification of PCU carries tribological risks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号